Abstract
This paper presents efficient simplification techniques tailored for sign semi-definite conditions (SsDCs). The SsDCs for a polynomial \(f\in \mathbb {R}[y]\) with parametric coefficients are written as \(\underset{\begin{array}{c} y\\ L \le y \le U \end{array}}{\forall }\ f(y) \ge 0\) and \(\underset{\begin{array}{c} y\\ L \le y \le U \end{array}}{\forall }\ f(y) \le 0\). We give sufficient conditions for the simplification techniques to be sound for linear and quadratic polynomials. We show their effectiveness compared to state of the art quantifier elimination tools for input formulae occurring in the optimal numerical algorithms synthesis problem by an implementation on top of Reduce command of Mathematica.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
We will not consider here the sign definite conditions but they can be treated in a similar fashion.
- 2.
(2) was motivated by the desire for simplifying the bounds of \(\sqrt{x}\). (3) and (4) are motivated by (1) and (2) and by the initial definitions of \(L^{\prime }\) and \(U^{\prime }\):
$$\begin{aligned} L^{\prime }&=L+\frac{y^{2}+(p_{0}+p_{1}+p_{2})L^{2}+(p_{1}+2p_{2} )LW+p_{2}W^{2}}{(p_{3}+p_{4})L+p_{4}W}\\ U^{\prime }&=L+W+\frac{y^{2}+(q_{0}+q_{1}+q_{2})L^{2}+(2q_{0} +q_{1})LW+q_{0}W^{2}}{(q_{3}+q_{4})L+q_{3}W} \end{aligned}$$.
References
Abraham, E.: Building bridges between symbolic computation and satisfiability checking. In: ISSAC 2015 Proceedings, pp. 1–6. ACM, New York (2015)
Anai, H., Yanami, H.: SyNRAC: a Maple-package for solving real algebraic constraints. In: Sloot, P.M.A., Abramson, D., Bogdanov, A.V., Gorbachev, Y.E., Dongarra, J., Zomaya, A.Y. (eds.) ICCS 2003, Part I. LNCS, vol. 2657, pp. 828–837. Springer, Heidelberg (2003)
Brown, C.W.: Improved projection for cylindrical algebraic decomposition. J. Symbolic Comput. 32(5), 447–465 (2001)
Brown, C.W.: QEPCAD-B: a program for computing with semi-algebraic sets using CADs. SIGSAM Bull. 37(4), 97–108 (2003)
Brown, C.W.: Constructing a single open cell in a cylindrical algebraic decomposition. In: ISSAC 2013 Proceedings, pp. 133–140. ACM, New York (2013)
Caviness, B., Johnson, J. (eds.): Quantifier Elimination and Cylindrical Algebraic Decomposition. Texts and Monographs in Symbolic Computation. Springer, Heidelberg (1998)
Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic decomposition. In: Brakhage, H. (ed.) Automata Theory and Formal Languages. LNCS, vol. 33, pp. 134–183. Springer, Heidelberg (1975)
Corzilius, F., Kremer, G., Junges, S., Schupp, S., Ábrahám, E.: SMT-RAT: an open source C++ toolbox for strategic and parallel SMT solving. In: Heule, M., Weaver, S. (eds.) SAT 2015. LNCS, vol. 9340, pp. 360–368. Springer, Heidelberg (2015). doi:10.1007/978-3-319-24318-4_26
Davenport, J., Heintz, J.: Real quantifier elimination is doubly exponential. J. Symbolic Comput. 5(1–2), 29–35 (1988)
Dolzmann, A., Seidl, A., Sturm, T.: Efficient projection orders for CAD. In: ISSAC 2004 Proceedings, pp. 111–118. ACM, New York (2004)
Dolzmann, A., Sturm, T.: REDLOG: computer algebra meets computer logic. SIGSAM Bull. (ACM Spec. Interest Group Symbolic Algebraic Manipulation) 31(2), 2–9 (1997)
Erascu, M., Hong, H.: Synthesis of optimal numerical algorithms using real quantifier elimination (case study: square root computation). In: ISSAC 2014 Proceedings, pp. 162–169. ACM, New York (2014)
Erascu, M., Hong, H.: Real quantifier elimination for the synthesis of optimal numerical algorithms (case study: square root computation). J. Symbolic Comput. 75, 110–126 (2016)
Heintz, J., Roy, M.-F., Solern, P.: On the theoretical and practical complexity of the existential theory of reals. Comput. J. 36(5), 427–431 (1993)
Iwane, H., Higuchi, H., Anai, H.: An effective implementation of a special quantifier elimination for a sign definite condition by logical formula simplification. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2013. LNCS, vol. 8136, pp. 194–208. Springer, Heidelberg (2013)
Jovanović, D., de Moura, L.: Solving non-linear arithmetic. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 339–354. Springer, Heidelberg (2012)
Meggitt, J.E.: Pseudo division and pseudo multiplication processes. IBM J. Res. Dev. 6(2), 210–226 (1962)
Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to Interval Analysis. Society for Industrial and Applied Mathematics, Philadelphia (2009)
Wolfram Research. Mathematica Edition: Version 8.0. Wolfram Research (2010)
Revol, N.: Interval Newton iteration in multiple precision for the univariate case. Numer. Algorithms 34(2–4), 417–426 (2003)
Strzebonski, A.: Cylindrical algebraic decomposition using validated numerics. J. Symbolic Comput. 41(9), 1021–1038 (2006)
Tarski, A.: A decision method for elementary algebra and geometry. Bull. Am. Math. Soc. 59, 91–93 (1953)
Acknowledgements
The author thanks Hoon Hong for providing feedback on an earlier draft of this paper and to anonymous referees.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Eraşcu, M. (2016). Efficient Simplification Techniques for Special Real Quantifier Elimination with Applications to the Synthesis of Optimal Numerical Algorithms. In: Gerdt, V., Koepf, W., Seiler, W., Vorozhtsov, E. (eds) Computer Algebra in Scientific Computing. CASC 2016. Lecture Notes in Computer Science(), vol 9890. Springer, Cham. https://doi.org/10.1007/978-3-319-45641-6_13
Download citation
DOI: https://doi.org/10.1007/978-3-319-45641-6_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-45640-9
Online ISBN: 978-3-319-45641-6
eBook Packages: Computer ScienceComputer Science (R0)