Nothing Special   »   [go: up one dir, main page]

Skip to main content

SMT-RAT: An Open Source C++ Toolbox for Strategic and Parallel SMT Solving

  • Conference paper
  • First Online:
Theory and Applications of Satisfiability Testing -- SAT 2015 (SAT 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9340))

Abstract

During the last decade, popular SMT solvers have been extended step-by-step with a wide range of decision procedures for different theories. Some SMT solvers also support the user-defined tuning and combination of such procedures, typically via command-line options. However, configuring solvers this way is a tedious task with restricted options.

In this paper we present our modular and extensible C++ library SMT-RAT, which offers numerous parameterized procedure modules for different logics. These modules can be configured and combined into an SMT solver using a comprehensible whilst powerful strategy, which can be specified via a graphical user interface. This makes it easier to construct a solver which is tuned for a specific set of problem instances. Compared to a previous version, we have extended our library with a number of new modules and support for parallelization in strategies. An additional contribution is our thread-safe and generic C++ library CArL, offering efficient data structures and basic operations for real arithmetic, which can be used for the fast implementation of new theory-solving procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abbott, J., Bigatti, A.M.: CoCoALib: a C++ library for computations in commutative algebra.. and beyond. In: Fukuda, K., Hoeven, J., Joswig, M., Takayama, N. (eds.) ICMS 2010. LNCS, vol. 6327, pp. 73–76. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  2. Akbarpour, B., Paulson, L.C.: Metitarski: An automatic theorem prover for real-valued special functions. Journal of Automated Reasoning 44(3), 175–205 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T., Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  4. Basu, S., Pollack, R., Roy, M.: Algorithms in Real Algebraic Geometry. Springer (2010)

    Google Scholar 

  5. Bauer, C., Frink, A., Kreckel, R.: Introduction to the GiNaC framework for symbolic computation within the C++ programming language. Journal of Symbolic Computation 33(1), 1–12 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bruttomesso, R., Pek, E., Sharygina, N., Tsitovich, A.: The openSMT solver. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 150–153. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  7. Chauhan, P., Goyal, D., Hasteer, G., Mathur, A., Sharma, N.: Non-cycle-accurate sequential equivalence checking. In: Proc. of DAC 2009, pp. 460–465. ACM Press (2009)

    Google Scholar 

  8. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The mathSAT5 SMT solver. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013 (ETAPS 2013). LNCS, vol. 7795, pp. 93–107. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  9. Codish, M., Fekete, Y., Fuhs, C., Giesl, J., Waldmann, J.: Exotic semi-ring constraints. In: Proc. of SMT 2012. EPiC Series, vol. 20, pp. 88–97. EasyChair (2013)

    Google Scholar 

  10. Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic decompostion. In: Brakhage, H. (ed.) Automata Theory and Formal Languages. LNCS, vol. 33, pp. 134–183. Springer, Heidelberg (1975)

    Google Scholar 

  11. Corzilius, F., Ábrahám, E.: Virtual substitution for SMT-solving. In: Owe, O., Steffen, M., Telle, J.A. (eds.) FCT 2011. LNCS, vol. 6914, pp. 360–371. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  12. Corzilius, F., Loup, U., Junges, S., Ábrahám, E.: SMT-RAT: an SMT-compliant nonlinear real arithmetic toolbox. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 442–448. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  13. Dehnert, C., Junges, S., Jansen, N., Corzilius, F., Volk, M., Bruintjes, H., Katoen, J.P., Ábrahám, E.: PROPhESY: a PRObabilistic ParamEter SYthesis tool. In: Proc. of CAV 2015. LNCS, vol. 9207. Springer (2015)

    Google Scholar 

  14. Dolzmann, A., Sturm, T.: Simplification of quantifier-free formulas over ordered fields. Journal of Symbolic Computation 24, 209–231 (1995)

    Article  MATH  Google Scholar 

  15. Dutertre, B., de Moura, L.: A fast linear-arithmetic solver for DPLL(T). In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  16. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  17. Fränzle, M., et al.: Efficient solving of large non-linear arithmetic constraint systems with complex Boolean structure. Journal on Satisfiability, Boolean Modeling and Computation 1(3–4), 209–236 (2007)

    MATH  Google Scholar 

  18. Gao, S., Ganai, M.K., Ivancic, F., Gupta, A., Sankaranarayanan, S., Clarke, E.M.: Integrating ICP and LRA solvers for deciding nonlinear real arithmetic problems. In: Proc. of FMCAD 2010, pp. 81–89. IEEE (2010)

    Google Scholar 

  19. Giesl, J., Brockschmidt, M., Emmes, F., Frohn, F., Fuhs, C., Otto, C., Plücker, M., Schneider-Kamp, P., Ströder, T., Swiderski, S., Thiemann, R.: Proving termination of programs automatically with \(\sf AProVE\). In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS, vol. 8562, pp. 184–191. Springer, Heidelberg (2014)

    Google Scholar 

  20. Granlund, T.: the GMP development team: GNU MP: The GNU Multiple Precision Arithmetic Library. http://gmplib.org

  21. Haible, B., Kreckel, R.B.: CLN: Class Library for Numbers. http://www.ginac.de/CLN

  22. Heintz, J., Roy, M.F., Solerno, P.: On the theoretical and practical complexity of the existential theory of reals. The Computer Journal 36(5), 427–431 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hong, H.: Comparison of several decision algorithms for the existential theory of the reals. Tech. Rep. 91–41, Research Institute for Symbolic Computation, Johannes Kepler University Linz (1991)

    Google Scholar 

  24. Jovanović, D., de Moura, L.: Solving non-linear arithmetic. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 339–354. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  25. Junges, S., Loup, U., Corzilius, F., Ábrahám, E.: On Gröbner bases in the context of satisfiability-modulo-theories solving over the real numbers. In: Muntean, T., Poulakis, D., Rolland, R. (eds.) CAI 2013. LNCS, vol. 8080, pp. 186–198. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  26. Kremer, G., Corzilius, F., Junges, S., Schupp, S., Ábrahám, E.: CArL: Computer ARithmetic and Logic Library. https://github.com/smtrat/carl

  27. Loup, U., Scheibler, K., Corzilius, F., Ábrahám, E., Becker, B.: A symbiosis of interval constraint propagation and cylindrical algebraic decomposition. In: Bonacina, M.P. (ed.) CADE 2013. LNCS, vol. 7898, pp. 193–207. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  28. de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  29. de Moura, L., Passmore, G.O.: The strategy challenge in SMT solving. In: Bonacina, M.P., Stickel, M.E. (eds.) Automated Reasoning and Mathematics. LNCS, vol. 7788, pp. 15–44. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  30. Platzer, A., Quesel, J.-D., Rümmer, P.: Real world verification. In: Schmidt, R.A. (ed.) CADE-22. LNCS, vol. 5663, pp. 485–501. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  31. Ravanbakhsh, H., Sankaranarayanan, S.: Counterexample guided synthesis of switched controllers for reach-while-stay properties. CoRR abs/1505.01180 (2015). http://arxiv.org/abs/1505.01180

  32. Scheibler, K., Kupferschmid, S., Becker, B.: Recent improvements in the SMT solver iSAT. In: Proc. of MBMV 2013, pp. 231–241. Institut für Angewandte Mikroelektronik und Datentechnik, Fakultät für Informatik und Elektrotechnik, Universität Rostock (2013)

    Google Scholar 

  33. Sebastiani, R.: Lazy satisfiability modulo theories. Journal on Satisfiability, Boolean Modeling and Computation 3, 141–224 (2007)

    MathSciNet  MATH  Google Scholar 

  34. https://github.com/smtrat/smtrat/wiki

  35. Weispfenning, V.: A new approach to quantifier elimination for real algebra. In: Quantifier Elimination and Cylindrical Algebraic Decomposition. Texts and Monographs in Symbolic Computation, pp. 376–392. Springer (1998)

    Google Scholar 

  36. Weispfenning, V.: The complexity of linear problems in fields. Journal of Symbolic Computation 5(1–2), 3–27 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  37. Weispfenning, V.: Quantifier elimination for real algebra - the quadratic case and beyond. Appl. Algebra Eng. Commun. Comput. 8(2), 85–101 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zankl, H., Middeldorp, A.: Satisfiability of non-linear (ir)rational arithmetic. In: Clarke, E.M., Voronkov, A. (eds.) LPAR-16 2010. LNCS, vol. 6355, pp. 481–500. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Corzilius .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Corzilius, F., Kremer, G., Junges, S., Schupp, S., Ábrahám, E. (2015). SMT-RAT: An Open Source C++ Toolbox for Strategic and Parallel SMT Solving. In: Heule, M., Weaver, S. (eds) Theory and Applications of Satisfiability Testing -- SAT 2015. SAT 2015. Lecture Notes in Computer Science(), vol 9340. Springer, Cham. https://doi.org/10.1007/978-3-319-24318-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24318-4_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24317-7

  • Online ISBN: 978-3-319-24318-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics