Abstract
In this paper, a new universal blind image quality assessment algorithm is proposed that works in presence of various distortions. The proposed algorithm uses natural scene statistics in spatial domain for generating Wakeby distribution statistical model to extract quality aware features. The features are fed to an SVM (support vector machine) regression model to predict quality score of input image without any information about the distortions type or reference image. Experimental results show that the image quality score obtained by the proposed method has higher correlation with respect to human perceptual opinions and it’s superior in some distortions comparing to some full-reference and other blind image quality methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Narvekar, N.D., Karam, L.J.: A no-reference image blur metric based on the cumulative probability of blur detection (CPBD). IEEE Trans. Image Process. 20, 2678–2683 (2011)
Zaric, A., Loncaric, M., Tralic, D., Brzica, M., Dumic, E., Grgic, S.: Image quality assessment - comparison of objective measures with results of subjective test. In: ELMAR, 2010 proceedings, pp. 113–118 (2010)
Zhou, W., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13, 600–612 (2004)
Dacheng, T., Xuelong, L., Wen, L., Xinbo, G.: Reduced-reference IQA in contourlet domain. IEEE Trans. Syst. Man Cybern. Part B Cybern. 39, 1623–1627 (2009)
Mittal, A., Moorthy, A.K., Bovik, A.C.: No-reference image quality assessment in the spatial domain. IEEE Trans. Image Process. 21, 4695–4708 (2012)
Li, L., Lin, W., Wang, X., Yang, G., Bahrami, K., Kot, A.C.: No–reference image blur assessment based on discrete orthogonal moments. IEEE Trans. Cybern. PP, 1–1 (2015)
Ji, S., Qin, L., Erlebacher, G.: Hybrid no-reference natural image quality assessment of noisy, blurry, jpeg2000, and jpeg images. IEEE Trans. Image Process. 20, 2089–2098 (2011)
Saad, M.A., Bovik, A.C., Charrier, C.: Model-based blind image quality assessment using natural DCT statistics. IEEE Trans. Image Process. 21, 3339–3352 (2011)
Ponomarenko, N., Ieremeiev, O., Lukin, V., Egiazarian, K., Jin, L., Astola, J., et al., Color image database TID2013: peculiarities and preliminary results. In: 2013 4th European Workshop on Visual Information Processing (EUVIP), pp. 106–111 (2013)
Saad, M.A., Bovik, A.C., Charrier, C.: Blind image quality assessment: a natural scene statistics approach in the DCT domain. IEEE Trans. Image Process. 21, 3339–3352 (2012)
Liu, L., Liu, B., Huang, H., Bovik, A.C.: No-reference image quality assessment based on spatial and spectral entropies. Sig. Process. Image Commun. 29, 856–863 (2014)
Moorthy, A.K., Bovik, A.C.: Statistics of natural image distortions. In: IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), pp. 962–965 (2010)
Shuhong, J., Abdalmajeed, S., Wei, L., Ruxuan, W.: Totally blind image quality assessment algorithm based on weibull statistics of natural scenes. Inf. Technol. J. 13, 1548–1554 (2014)
Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: 2004. Conference Record of the Thirty-Seventh Asilomar Conference on Signals, Systems and Computers, pp. 1398–1402 (2003)
Schölkopf, B., Smola, A.J., Williamson, R.C., Bartlett, P.L.: New support vector algorithms. Neural Comput. 12, 1207–1245 (2000)
Chang, C.-C., Lin, C.-J.: LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. 2, 1–27 (2011)
Sheikh, H.R., Sabir, M.F., Bovik, A.C.: A statistical evaluation of recent full reference image quality assessment algorithms. IEEE Trans. Image Process. 15, 3440–3451 (2006)
Rohaly, A.M., Libert, J., Corriveau, P., Webster, A.: Final report from the video quality experts group on the validation of objective models of video quality assessment, ITU-T Standards Contribution COM, pp. 9–80 (2000)
Huynh-Thu, Q., Ghanbari, M.: Scope of validity of PSNR in image/video quality assessment. Electron. Lett. 44, 800–801 (2008)
Griffiths, G.A.: A theoretically based Wakeby distribution for annual flood series. Hydrol. Sci. J. 34, 231–248 (1989)
Öztekin, T.: Estimation of the parameters of wakeby distribution by a numerical least squares method and applying it to the annual peak flows of Turkish rivers. Water Resour. Manage. 25, 1299–1313 (2011)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Jenadeleh, M., Moghaddam, M.E. (2015). Blind Image Quality Assessment Through Wakeby Statistics Model. In: Kamel, M., Campilho, A. (eds) Image Analysis and Recognition. ICIAR 2015. Lecture Notes in Computer Science(), vol 9164. Springer, Cham. https://doi.org/10.1007/978-3-319-20801-5_2
Download citation
DOI: https://doi.org/10.1007/978-3-319-20801-5_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-20800-8
Online ISBN: 978-3-319-20801-5
eBook Packages: Computer ScienceComputer Science (R0)