Nothing Special   »   [go: up one dir, main page]

Skip to main content

Maximum ATSP with Weights Zero and One via Half-Edges

  • Conference paper
  • First Online:
Approximation and Online Algorithms (WAOA 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9499))

Included in the following conference series:

Abstract

We present a fast combinatorial 3 / 4-approximation algorithm for the maximum asymmetric TSP with weights zero and one. The approximation factor of this algorithm matches the currently best one given by Bläser in 2004 and based on linear programming. Our algorithm first computes a maximum size matching and a maximum weight cycle cover without certain cycles of length two but possibly with half-edges - a half-edge of a given edge e is informally speaking a half of e that contains one of the endpoints of e. Then from the computed matching and cycle cover it extracts a set of paths, whose weight is large enough to be able to construct a traveling salesman tour with the claimed guarantee.

Partly supported by Polish National Science Center grant UMO-2013/11/B/ST6/01748.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bläser, M.: An 8/13-approximation algorithm for the asymmetric maximum TSP. J. Algorithms 50(1), 23–48 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bläser, M.: A 3/4-approximation algorithm for maximum ATSP with weights zero and one. In: Jansen, K., Khanna, S., Rolim, J.D.P., Ron, D. (eds.) RANDOM 2004 and APPROX 2004. LNCS, vol. 3122, pp. 61–71. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  3. Bläser, M., Manthey, B.: Two approximation algorithms for 3-cycle covers. In: Jansen, K., Leonardi, S., Vazirani, V.V. (eds.) APPROX 2002. LNCS, vol. 2462, p. 40. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  4. Bläser, M., Siebert, B.: Computing cycle covers without short cycles. In: Meyer auf der Heide, F. (ed.) ESA 2001. LNCS, vol. 2161, pp. 369–379. Springer, Heidelberg (2001)

    Google Scholar 

  5. Fisher, M.L., Nemhauser, G.L., Wolsey, L.A.: An analysis of approximations for finding a maximum weight Hamiltonian circuit. Oper. Res. 27(4), 799–809 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  6. Kaplan, H., Lewenstein, M., Shafrir, N., Sviridenko, M.: Approximation algorithms for asymmetric tsp by decomposing directed regular multigraphs. J. ACM 52(4), 602–626 (2005). Preliminary version appeared in FOCS’03

    Article  MathSciNet  Google Scholar 

  7. Karpinski, M., Schmied, R.: Improved Inapproximability results for the shortest superstring and related problems. In: CATS, pp. 27–36 (2013)

    Google Scholar 

  8. Kosaraju, S.R., Park, J.K., Stein, C.: Long tours and short superstrings (preliminary version). In: Proceedings of the 35th Annual Symposium on Foundations of Computer Science, pp. 166–177 (1994)

    Google Scholar 

  9. Kowalik, L., Mucha, M.: Deterministic 7/8-approximation for the metric maximum tsp. Theor. Comput. Sci. 410(47–49), 5000–5009 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  10. Kowalik, L., Mucha, M.: 35/44-approximation for asymmetric maximum tsp with triangle inequality. Algorithmica 59(2), 240–255 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  11. Lewenstein, M., Sviridenko, M.: A 5/8 approximation algorithm for the maximum asymmetric tsp. SIAM J. Discrete Math. 17(2), 237–248 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Lovasz, L., Plummer, M.D.: Matching Theory (1986)

    Google Scholar 

  13. Paluch, K., Mucha, M., Madry, A.: A 7/9 - approximation algorithm for the maximum traveling salesman problem. In: Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds.) Approximation, Randomization, and Combinatorial Optimization. LNCS, vol. 5687, pp. 298–311. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  14. Paluch, K.E., Elbassioni, K.M., van Zuylen, A.: Simpler approximation of the maximum asymmetric traveling salesman problem. In: Proceedings of the 29th Symposium on Theoretical Aspects of Computer Science, STACS 2012, Leibniz International Proceedings of Informatics 14, pp. 501–506 (2012)

    Google Scholar 

  15. Paluch, K.: Better Approximation Algorithms for Maximum Asymmetric Traveling Salesman and Shortest Superstring. CoRR abs/1401.3670 (2014)

    Google Scholar 

  16. Papadimitriou, C.H., Yannakakis, M.: The traveling salesman problem with distances one and two. Math. Oper. Res. 18, 1–11 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  17. Vishwanathan, S.: An approximation algorithm for the asymmetric travelling salesman problem with distances one and two. Inform. Proc. Lett. 44, 297–302 (1992)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katarzyna Paluch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Paluch, K. (2015). Maximum ATSP with Weights Zero and One via Half-Edges. In: Sanità, L., Skutella, M. (eds) Approximation and Online Algorithms. WAOA 2015. Lecture Notes in Computer Science(), vol 9499. Springer, Cham. https://doi.org/10.1007/978-3-319-28684-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28684-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28683-9

  • Online ISBN: 978-3-319-28684-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics