Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

35/44-approximation for Asymmetric Maximum TSP with Triangle Inequality

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

We describe a new approximation algorithm for the asymmetric maximum traveling salesman problem (ATSP) with triangle inequality. Our algorithm achieves approximation factor 35/44 which improves on the previous 31/40 factor of Bläser, Ram and Sviridenko (Lecture Notes in Computer Science, vol. 3122, pp. 350–359, 2005).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bläser, M., Ram, S., Sviridenko, M.: Improved approximation algorithms for metric maximum ATSP and maximum 3-cycle cover problems. In: Proc. 9th Workshop on Algorithms and Data Structures (WADS 2005). Lecture Notes in Computer Science, vol. 3122, pp. 350–359. Springer, Berlin (2005)

    Chapter  Google Scholar 

  2. Bläser, M.: An 8/13-approximation algorithm for the asymmetric maximum tsp. J. Algorithms 50(1), 23–48 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. Hassin, R., Rubinstein, S.: Better approximations for max TSP. Inf. Process. Lett. 75(4), 181–186 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  4. Hassin, R., Rubinstein, S.: A 7/8-approximation algorithm for metric Max TSP. Inf. Process. Lett. 81(5), 247–251 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. Rao Kosaraju, S., Park, J.K., Stein, C.: Long tours and short superstrings (preliminary version). In: Proc. 39th Ann. IEEE Symp. on Foundations of Comput. Sci. (FOCS 1994), pp. 166–177 (1994)

  6. Lewenstein, M., Sviridenko, M.: A 5/8 approximation algorithm for the maximum asymmetric TSP. SIAM J. Discrete Math. 17(2), 237–248 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. Kostochka, A.V., Serdyukov, A.I.: Polynomial algorithms with the estimates 3/4 and 5/6 for the traveling salesman problem of the maximum. Upr. Sist. 26, 55–59 (1985) (in Russian)

    MathSciNet  Google Scholar 

  8. Kaplan, H., Lewenstein, M., Shafrir, N., Sviridenko, M.: Approximation algorithms for asymmetric TSP by decomposing directed regular multigraphs. J. ACM 52(4), 602–626 (2005)

    Article  MathSciNet  Google Scholar 

  9. Chen, Z.-Z., Nagoya, T.: Improved approximation algorithms for metric Max TSP. In: Proc. 13th Annual European Symposium on Algorithms (ESA’05). Lecture Notes in Computer Science, vol. 3669, pp. 179–190. Springer, Berlin (2005)

    Google Scholar 

  10. Lovász, L., Plummer, M.D.: Matching Theory. Elsevier, Amsterdam (1986)

    MATH  Google Scholar 

  11. Bläser, M., Manthey, B.: Two approximation algorithms for 3-cycle covers. In: Proc. 5th Int. Workshop on Approximation Algorithms for Combinatorial Optimization Problems (APPROX 2002). Lecture Notes in Computer Science, vol. 2462, pp. 40–50. Springer, Berlin (2002)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukasz Kowalik.

Additional information

Part of this work was done while both authors were staying at the Max Planck Institute in Saarbruecken, Germany. This research is partially supported by a grant from the Polish Ministry of Science and Higher Education, project N206 005 32/0807. A preliminary version of this paper appeared in Proc. 10th International Workshop on Algorithms and Data Structures (WADS 2007), LNCS 4619, 2007, pp. 589–600.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kowalik, L., Mucha, M. 35/44-approximation for Asymmetric Maximum TSP with Triangle Inequality. Algorithmica 59, 240–255 (2011). https://doi.org/10.1007/s00453-009-9306-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-009-9306-3

Keywords

Navigation