Nothing Special   »   [go: up one dir, main page]

Skip to main content

Short-Term Motion Tracking Using Inexpensive Sensors

  • Conference paper
  • First Online:
Advances in Artificial Intelligence and Its Applications (MICAI 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9414))

Included in the following conference series:

  • 1502 Accesses

Abstract

Current consumer electronics is equipped with various sensors, among which accelerometer, gyroscope, and magnetometer represent typical examples. In this paper, we study the possibility of using these low-cost sensors for 3D motion and orientation tracking. In particular, we thoroughly describe a simple dead-reckoning algorithm for sensor data fusion which produces a 3D path of the device in real time. More importantly, we propose a method of automated stabilization every time the device stands still, which corrects the bias caused by sensor inaccuracies. This method extends the time when motion tracking is reliable. We evaluate the proposed pipeline in a variety of experiments using two common smartphones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    In our case, the Android OS requires launching an application that uses the magnetometer and rotating the device in the “figure 8 pattern”.

  2. 2.

    The technique of updating the stored values when the device is at rest is usually called zero-velocity update [18].

  3. 3.

    We can achieve the projetion by creating a rotation matrix that rotates the gravity vector to the z axis, then rotate the \(mag_b\) and \(ori \cdot mag_c\) vectors using this matrix, set their z coordinate to zero and rotate them back.

References

  1. Abbott, H., Powell, D.: Land-vehicle navigation using GPS. Proc. IEEE 87(1), 145–162 (1999)

    Article  Google Scholar 

  2. Barański, P., Bujacz, M., Strumillo, P.: Dead reckoning navigation: supplementing pedestrian GPS with an accelerometer-based pedometer and an electronic compass. In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 7502, p. 16, June 2009

    Google Scholar 

  3. Chung, H., Ojeda, L., Borenstein, J.: Accurate mobile robot dead-reckoning with a precision-calibrated fiber-optic gyroscope. IEEE Trans. Robot. Autom. 17(1), 80–84 (2001)

    Article  Google Scholar 

  4. Fang, L., Antsaklis, P., Montestruque, L., McMickell, M., Lemmon, M., Sun, Y., Fang, H., Koutroulis, I., Haenggi, M., Xie, M., Xie, X.: Design of a wireless assisted pedestrian dead reckoning system - the NavMote experience. IEEE Trans. Instrum. Meas. 54(6), 2342–2358 (2005)

    Article  Google Scholar 

  5. Gusenbauer, D., Isert, C., Krosche, J.: Self-contained indoor positioning on off-the-shelf mobile devices. In: International Conference on Indoor Positioning and Indoor Navigation (IPIN), pp. 1–9, September 2010

    Google Scholar 

  6. Jimenez, A., Seco, F., Prieto, J., Guevara, J.: Indoor pedestrian navigation using an INS/EKF framework for yaw drift reduction and a foot-mounted IMU. In: 7th Workshop on Positioning Navigation and Communication (WPNC), pp. 135–143, March 2010

    Google Scholar 

  7. Kalman, R.E.: A new approach to linear filtering and prediction problems. Trans. ASME-J. Basic Eng. 82(Series D), 35–45 (1960)

    Article  Google Scholar 

  8. Khosla, P., Khanna, R., Sood, S.: Quantification and mitigation of errors in the inertial measurements of distance. MAPAN 30(1), 49–57 (2015). http://dx.doi.org/10.1007/s12647-014-0115-z

    Article  Google Scholar 

  9. Kreyszig, E.: Advanced Engineering Mathematics, 8th edn. Wiley, New York (1999)

    Google Scholar 

  10. Lee, S.W., Mase, K.: Activity and location recognition using wearable sensors. IEEE Pervasive Comput. 1(3), 24–32 (2002)

    Article  Google Scholar 

  11. Li, M., Kim, B.H., Mourikis, A.: Real-time motion tracking on a cellphone using inertial sensing and a rolling-shutter camera. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 4712–4719, May 2013

    Google Scholar 

  12. Liu, M., Wang, H., Guo, Q., Jiang, X.: Research on particle filter based geomagnetic aided inertial navigation algorithm. In: 3rd International Symposium on Systems and Control in Aeronautics and Astronautics (ISSCAA), pp. 1023–1026, June 2010

    Google Scholar 

  13. Murray, G.: Rotation about an arbitrary axis in 3 dimensions (2013). http://inside.mines.edu/fs_home/gmurray/ArbitraryAxisRotation/ArbitraryAxisRotation.pdf. Accessed 24 September 2014

  14. Neto, P., Norberto Pires, J., Moreira, A.: 3-D position estimation from inertial sensing: minimizing the error from the process of double integration of accelerations. In: 39th Annual Conference of the IEEE Industrial Electronics Society (IECON), pp. 4026–4031, November 2013

    Google Scholar 

  15. Ojeda, L., Borenstein, J.: Personal dead-reckoning system for GPS-denied environments. In: IEEE International Workshop on Safety, Security and Rescue Robotics (SSRR), pp. 1–6, September 2007

    Google Scholar 

  16. Ruiz, A., Granja, F., Honorato, P.J., Rosas, J.: Accurate pedestrian indoor navigation by tightly coupling foot-mounted IMU and RFID measurements. IEEE Trans. Instrum. Meas. 61(1), 178–189 (2012)

    Article  Google Scholar 

  17. Shiau, J.K., Huang, C.X., Chang, M.Y., et al.: Noise characteristics of MEMS gyros null drift and temperature compensation. Appl. Sci. Eng 15(3), 239–246 (2012)

    Google Scholar 

  18. Skog, I., Handel, P., Nilsson, J.O., Rantakokko, J.: Zero-velocity detection - an algorithm evaluation. IEEE Trans. Biomed. Eng. 57(11), 2657–2666 (2010)

    Article  Google Scholar 

  19. Stuart, R., Norvig, P.: Artificial Intelligence: A Modern Approach, 3rd edn. Prentice Hall, New York (2010)

    Google Scholar 

  20. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics (Intelligent Robotics and Autonomous Agents). The MIT Press, Cambridge (2005)

    Google Scholar 

  21. Toledo-Moreo, R., Zamora-Izquierdo, M., Gomez-Skarmeta, A.: IMM-EKF based road vehicle navigation with low cost GPS/INS. In: IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, pp. 433–438, September 2006

    Google Scholar 

  22. Weenk, D., Roetenberg, D., van Beijnum, B., Hermens, H., Veltink, P.: Ambulatory estimation of relative foot positions by fusing ultrasound and inertial sensor data. IEEE Trans. Neural Syst. Rehabil. Eng. 23(5), 817–826 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

Research was partially supported by the Czech Science Foundation under the project P103-15-19877S and by SVV under the project 260 224.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filip Matzner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Matzner, F., Barták, R. (2015). Short-Term Motion Tracking Using Inexpensive Sensors. In: Pichardo Lagunas, O., Herrera Alcántara, O., Arroyo Figueroa, G. (eds) Advances in Artificial Intelligence and Its Applications. MICAI 2015. Lecture Notes in Computer Science(), vol 9414. Springer, Cham. https://doi.org/10.1007/978-3-319-27101-9_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27101-9_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27100-2

  • Online ISBN: 978-3-319-27101-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics