Abstract
In this paper, a hybrid training model for interval type-2 fuzzy logic system is proposed. The hybrid training model uses extreme learning machine to tune the consequent part parameters and genetic algorithm to optimize the antecedent part parameters. The proposed hybrid learning model of interval type-2 fuzzy logic system is tested on the prediction of Mackey-Glass time series data sets with different levels of noise. The results are compared with the existing models in literature; extreme learning machine and Kalman filter based learning of consequent part parameters with randomly generated antecedent part parameters. It is observed that the interval type-2 fuzzy logic system provides improved performance with the proposed hybrid learning model.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Klir, G.J., Wierman, M.J.: Uncertainty-Based Information: Elements of Generalized Information Theory. Studies in Fuzziness and Soft Computing, vol. 15, 2nd edn. Physica-Verlag, Heidelberg (1999)
Hagras, H.: Type-2 flcs: a new generation of fuzzy controllers. IEEE Comput. Intell. Mag. 2(1), 30–43 (2007)
Mendel, J.M.: Sources of uncertainty. In: Mendel, J.M. (ed.) Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions, pp. 66–78. Prentice-Hall PTR, Upper Saddle River (2001)
Mendel, J., John, R., Liu, F.: Interval type-2 fuzzy logic systems made simple. IEEE Trans. Fuzzy Syst. 14(6), 808–821 (2006)
Mendel, J.M.: Computing derivatives in interval type-2 fuzzy logic systems. IEEE Trans. Fuzzy Syst. 12(1), 84–98 (2004)
Wu, D., Tan, W.W.: Genetic learning and performance evaluation of interval type-2 fuzzy logic controllers. Eng. Appl. Artif. Intell. 19(8), 829–841 (2006)
Castillo, O., Melin, P., Alanis, A., Montiel, O., Sepulveda, R.: Optimization of interval type-2 fuzzy logic controllers using evolutionary algorithms. Soft Comput. 15(6), 1145–1160 (2011)
Khosravi, A., Nahavandi, S., Creighton, D.: Short term load forecasting using interval type-2 fuzzy logic systems. In: 2011 IEEE International Conference on Fuzzy Systems (FUZZ), pp. 502–508, June 2011
Maldonado, Y., Castillo, O., Melin, P.: Particle swarm optimization of interval type-2 fuzzy systems for FPGA applications. Appl. Soft Comput. 13(1), 496–508 (2013)
Juang, C.F., Hsu, C.H., Chuang, C.F.: Reinforcement self-organizing interval type-2 fuzzy system with ant colony optimization. In: IEEE International Conference on Systems, Man and Cybernetics, SMC 2009, pp. 771–776, October 2009
Khanesar, M., Kayacan, E., Teshnehlab, M., Kaynak, O.: Extended kalman filter based learning algorithm for type-2 fuzzy logic systems and its experimental evaluation. IEEE Trans. Ind. Electron. 59(11), 4443–4455 (2012)
Mendez, G.M., de los Angeles Hernandez, M.: Hybrid learning for interval type-2 fuzzy logic systems based on orthogonal least-squares and back-propagation methods. Inf. Sci. 179(13), 2146–2157 (2009)
Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applications. Neurocomputing 70(1–3), 489–501 (2006)
Jang, J.S., Sun, C.T.: Functional equivalence between radial basis function networks and fuzzy inference systems. IEEE Trans. Neural Netw. 4(1), 156–159 (1993)
Qu, Y., Shang, C., Wu, W., Shen, Q.: Evolutionary fuzzy extreme learning machine for mammographic risk analysis. Int. J. Fuzzy Syst. 13(4), 282–291 (2011)
Aziz, N.L.A., Yap, S., Bunyamin, M.A.: A hybrid fuzzy logic and extreme learning machine for improving efficiency of circulating water systems in power generation plant. In: IOP Conference Series: Earth and Environmental Science, vol. 16 (2013)
Sun, Z.L., Au, K.-F., Choi, T.M.: Neuro-fuzzy inference system through integration of fuzzy logic and extreme learning machines. IEEE Trans. Syst. Man Cybern. B Cybern. 37(5), 1321–1352 (2007)
Rong, H.J., Huang, G.B., Sundararajan, N., Saratchandran, P.: Online sequential fuzzy extreme learning machine for function approximation and classification problems. IEEE Trans. Syst. Man Cybern. B Cybern. 39(4), 1067–1072 (2009)
Huang, G.B., Chen, L.: Enhanced random search based incremental extreme learning machine. Neurocomput. 71(16–18), 3460–3468 (2008)
Zhang, Y., Cai, Z., Gong, W., Wang, X.: Self-adaptive differential evolution extreme learning machine and its application in water quality eva. Comput. Inf. Syst. 11(4), 1443–1451 (2015)
Feng, G., Huang, G., Lin, Q., Gay, R.: Error minimized extreme learning machine with growth of hidden nodes and incremental learning. IEEE Trans. Neural Netw. 20(8), 1352–1359 (2009)
Zhang, R., Lan, Y., Huang, G.-B., Soh, Y.C.: Extreme learning machine with adaptive growth of hidden nodes and incremental updating of output weights. In: Kamel, M., Karray, F., Gueaieb, W., Khamis, A. (eds.) AIS 2011. LNCS, vol. 6752, pp. 253–262. Springer, Heidelberg (2011)
Deng, Z., Choi, K.S., Cao, L., Wang, S.: T2fela: Type-2 fuzzy extreme learning algorithm for fast training of interval type-2 tsk fuzzy logic system. IEEE Trans. Neural Netw. Learn. Syst. 25(4), 664–676 (2014)
Hassan, S., Khosravi, A., Jaafar, J.: Training of interval type-2 fuzzy logic system using extreme learning machine for load forecasting. In: Proceedings of the 9th International Conference on Ubiquitous Information Management and Communication, IMCOM 2015, pp. 87–91 (2015)
Castro, J., Mantas, C., Benitez, J.: Interpretation of artificial neural networks by means of fuzzy rules. IEEE Trans. Neural Netw. 13(1), 101–117 (2002)
Wu, D., Mendel, J.: Enhanced karnik-mendel algorithms. IEEE Trans. Fuzzy Syst. 17(4), 923–934 (2009)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Hassan, S., Khosravi, A., Jaafar, J., Khanesar, M.A. (2015). Hybrid Model for the Training of Interval Type-2 Fuzzy Logic System. In: Arik, S., Huang, T., Lai, W., Liu, Q. (eds) Neural Information Processing. ICONIP 2015. Lecture Notes in Computer Science(), vol 9489. Springer, Cham. https://doi.org/10.1007/978-3-319-26532-2_71
Download citation
DOI: https://doi.org/10.1007/978-3-319-26532-2_71
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-26531-5
Online ISBN: 978-3-319-26532-2
eBook Packages: Computer ScienceComputer Science (R0)