Nothing Special   »   [go: up one dir, main page]

Skip to main content

Hybrid Model for the Training of Interval Type-2 Fuzzy Logic System

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9489))

Included in the following conference series:

Abstract

In this paper, a hybrid training model for interval type-2 fuzzy logic system is proposed. The hybrid training model uses extreme learning machine to tune the consequent part parameters and genetic algorithm to optimize the antecedent part parameters. The proposed hybrid learning model of interval type-2 fuzzy logic system is tested on the prediction of Mackey-Glass time series data sets with different levels of noise. The results are compared with the existing models in literature; extreme learning machine and Kalman filter based learning of consequent part parameters with randomly generated antecedent part parameters. It is observed that the interval type-2 fuzzy logic system provides improved performance with the proposed hybrid learning model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Klir, G.J., Wierman, M.J.: Uncertainty-Based Information: Elements of Generalized Information Theory. Studies in Fuzziness and Soft Computing, vol. 15, 2nd edn. Physica-Verlag, Heidelberg (1999)

    Book  MATH  Google Scholar 

  2. Hagras, H.: Type-2 flcs: a new generation of fuzzy controllers. IEEE Comput. Intell. Mag. 2(1), 30–43 (2007)

    Article  Google Scholar 

  3. Mendel, J.M.: Sources of uncertainty. In: Mendel, J.M. (ed.) Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions, pp. 66–78. Prentice-Hall PTR, Upper Saddle River (2001)

    Google Scholar 

  4. Mendel, J., John, R., Liu, F.: Interval type-2 fuzzy logic systems made simple. IEEE Trans. Fuzzy Syst. 14(6), 808–821 (2006)

    Article  Google Scholar 

  5. Mendel, J.M.: Computing derivatives in interval type-2 fuzzy logic systems. IEEE Trans. Fuzzy Syst. 12(1), 84–98 (2004)

    Article  Google Scholar 

  6. Wu, D., Tan, W.W.: Genetic learning and performance evaluation of interval type-2 fuzzy logic controllers. Eng. Appl. Artif. Intell. 19(8), 829–841 (2006)

    Article  Google Scholar 

  7. Castillo, O., Melin, P., Alanis, A., Montiel, O., Sepulveda, R.: Optimization of interval type-2 fuzzy logic controllers using evolutionary algorithms. Soft Comput. 15(6), 1145–1160 (2011)

    Article  Google Scholar 

  8. Khosravi, A., Nahavandi, S., Creighton, D.: Short term load forecasting using interval type-2 fuzzy logic systems. In: 2011 IEEE International Conference on Fuzzy Systems (FUZZ), pp. 502–508, June 2011

    Google Scholar 

  9. Maldonado, Y., Castillo, O., Melin, P.: Particle swarm optimization of interval type-2 fuzzy systems for FPGA applications. Appl. Soft Comput. 13(1), 496–508 (2013)

    Article  Google Scholar 

  10. Juang, C.F., Hsu, C.H., Chuang, C.F.: Reinforcement self-organizing interval type-2 fuzzy system with ant colony optimization. In: IEEE International Conference on Systems, Man and Cybernetics, SMC 2009, pp. 771–776, October 2009

    Google Scholar 

  11. Khanesar, M., Kayacan, E., Teshnehlab, M., Kaynak, O.: Extended kalman filter based learning algorithm for type-2 fuzzy logic systems and its experimental evaluation. IEEE Trans. Ind. Electron. 59(11), 4443–4455 (2012)

    Article  Google Scholar 

  12. Mendez, G.M., de los Angeles Hernandez, M.: Hybrid learning for interval type-2 fuzzy logic systems based on orthogonal least-squares and back-propagation methods. Inf. Sci. 179(13), 2146–2157 (2009)

    Article  Google Scholar 

  13. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applications. Neurocomputing 70(1–3), 489–501 (2006)

    Article  Google Scholar 

  14. Jang, J.S., Sun, C.T.: Functional equivalence between radial basis function networks and fuzzy inference systems. IEEE Trans. Neural Netw. 4(1), 156–159 (1993)

    Article  Google Scholar 

  15. Qu, Y., Shang, C., Wu, W., Shen, Q.: Evolutionary fuzzy extreme learning machine for mammographic risk analysis. Int. J. Fuzzy Syst. 13(4), 282–291 (2011)

    MathSciNet  Google Scholar 

  16. Aziz, N.L.A., Yap, S., Bunyamin, M.A.: A hybrid fuzzy logic and extreme learning machine for improving efficiency of circulating water systems in power generation plant. In: IOP Conference Series: Earth and Environmental Science, vol. 16 (2013)

    Google Scholar 

  17. Sun, Z.L., Au, K.-F., Choi, T.M.: Neuro-fuzzy inference system through integration of fuzzy logic and extreme learning machines. IEEE Trans. Syst. Man Cybern. B Cybern. 37(5), 1321–1352 (2007)

    Article  Google Scholar 

  18. Rong, H.J., Huang, G.B., Sundararajan, N., Saratchandran, P.: Online sequential fuzzy extreme learning machine for function approximation and classification problems. IEEE Trans. Syst. Man Cybern. B Cybern. 39(4), 1067–1072 (2009)

    Article  Google Scholar 

  19. Huang, G.B., Chen, L.: Enhanced random search based incremental extreme learning machine. Neurocomput. 71(16–18), 3460–3468 (2008)

    Article  Google Scholar 

  20. Zhang, Y., Cai, Z., Gong, W., Wang, X.: Self-adaptive differential evolution extreme learning machine and its application in water quality eva. Comput. Inf. Syst. 11(4), 1443–1451 (2015)

    Google Scholar 

  21. Feng, G., Huang, G., Lin, Q., Gay, R.: Error minimized extreme learning machine with growth of hidden nodes and incremental learning. IEEE Trans. Neural Netw. 20(8), 1352–1359 (2009)

    Article  Google Scholar 

  22. Zhang, R., Lan, Y., Huang, G.-B., Soh, Y.C.: Extreme learning machine with adaptive growth of hidden nodes and incremental updating of output weights. In: Kamel, M., Karray, F., Gueaieb, W., Khamis, A. (eds.) AIS 2011. LNCS, vol. 6752, pp. 253–262. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  23. Deng, Z., Choi, K.S., Cao, L., Wang, S.: T2fela: Type-2 fuzzy extreme learning algorithm for fast training of interval type-2 tsk fuzzy logic system. IEEE Trans. Neural Netw. Learn. Syst. 25(4), 664–676 (2014)

    Article  Google Scholar 

  24. Hassan, S., Khosravi, A., Jaafar, J.: Training of interval type-2 fuzzy logic system using extreme learning machine for load forecasting. In: Proceedings of the 9th International Conference on Ubiquitous Information Management and Communication, IMCOM 2015, pp. 87–91 (2015)

    Google Scholar 

  25. Castro, J., Mantas, C., Benitez, J.: Interpretation of artificial neural networks by means of fuzzy rules. IEEE Trans. Neural Netw. 13(1), 101–117 (2002)

    Article  Google Scholar 

  26. Wu, D., Mendel, J.: Enhanced karnik-mendel algorithms. IEEE Trans. Fuzzy Syst. 17(4), 923–934 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saima Hassan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Hassan, S., Khosravi, A., Jaafar, J., Khanesar, M.A. (2015). Hybrid Model for the Training of Interval Type-2 Fuzzy Logic System. In: Arik, S., Huang, T., Lai, W., Liu, Q. (eds) Neural Information Processing. ICONIP 2015. Lecture Notes in Computer Science(), vol 9489. Springer, Cham. https://doi.org/10.1007/978-3-319-26532-2_71

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26532-2_71

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26531-5

  • Online ISBN: 978-3-319-26532-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics