Abstract
This paper describes the construction of intelligent hybrid architectures and the optimization of the fuzzy integrators for time series prediction; interval type-2 fuzzy neural networks (IT2FNN). IT2FNN used hybrid learning algorithm techniques (gradient descent backpropagation and gradient descent with adaptive learning rate backpropagation). The IT2FNN is represented by Takagi–Sugeno–Kang reasoning. Therefore this TSK IT2FNN is represented as an adaptive neural network with hybrid learning in order to automatically generate an interval type-2 fuzzy logic system (TSK IT2FLS). We use interval type-2 and type-1 fuzzy systems to integrate the output (forecast) of each Ensemble of ANFIS models. Particle Swarm Optimization (PSO) was used for the optimization of membership functions (MFs) parameters of the fuzzy integrators. The Mackey-Glass time series is used to test of performance of the proposed architecture. Simulation results show the effectiveness of the proposed approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ascia, G., Catania, V., Panno, D.: An Integrated Fuzzy-GA Approach for Buffer Management. IEEE Trans. Fuzzy Syst. 14(4), pp. 528–541. (2006).
Bonissone, P.P., Subbu, R., Eklund, N., Kiehl, T.R.: Evolutionary Algorithms + Domain Knowledge = Real-World Evolutionary Computation. IEEE Trans. Evol Comput. 10(3), pp. 256–280. (2006).
Brocklebank J. C., Dickey, D.A.: SAS for Forecasting Series. SAS Institute Inc. Cary, NC, USA, pp. 6-140. (2003).
Brockwell, P. D., Richard, A.D.: Introduction to Time Series and Forecasting. Springer-Verlag New York, pp 1-219. (2002).
Castillo, O., Melin, P.: Optimization of type-2 fuzzy systems based on bio-inspired methods: A concise review, Information Sciences, Volume 205, pp. 1-19. (2012).
Castro J.R., Castillo O., Melin P., Rodriguez A.: A Hybrid Learning Algorithm for Interval Type-2 Fuzzy Neural Networks: The Case of Time Series Prediction. Springer-Verlag Berlin Heidelberg, Vol. 15a, pp. 363-386. (2008).
Castro, J.R., Castillo, O., Martínez, L.G.: Interval type-2 fuzzy logic toolbox. Engineering Letters, 15(1), pp. 89–98. (2007).
Chiou, Y.-C., Lan, L.W.: Genetic fuzzy logic controller: an iterative evolution algorithm with new encoding method. Fuzzy Sets Syst. 152(3), pp. 617–635. (2005).
Deb, K.: A population-based algorithm-generator for real-parameter optimization. Springer, Heidelberg. (2005).
Engelbrecht, A.P.: Fundamentals of computational swarm intelligence. John Wiley & Sons, Ltd., Chichester. (2005).
Gaxiola, F., Melin, P., Valdez, F., Castillo, O.: Optimization of type-2 fuzzy weight for neural network using genetic algorithm and particle swarm optimization. Nature and Biologically Inspired Computing (NaBIC). World Congress on, vol., no., pp. 22-28. (2013).
Hagan, M.T., Demuth, H.B., Beale, M.H.: Neural Network Design. PWS Publishing, Boston. (1996).
Hagras, H.: Comments on Dynamical Optimal Training for Interval Type-2 Fuzzy Neural Network (T2FNN). IEEE Transactions on Systems Man And Cybernetics Part B 36(5), pp. 1206–1209. (2006).
Haykin, S.: Adaptive Filter Theory. Prentice Hall, Englewood Cliffs. (2002) ISBN 0-13-048434-2.
Horikowa, S., Furuhashi, T., Uchikawa, Y.: On fuzzy modeling using fuzzy neural networks with the backpropagation algorithm. IEEE Transactions on Neural Networks 3, (1992).
Ishibuchi, H., Nozaki, K., Yamamoto, N., Tanaka, H.: Selecting fuzzy if-then rules for classification problems using genetic algorithms. IEEE Trans. Fuzzy Syst. 3, pp. 260–270. (1995).
Jang J.S.R.: Fuzzy modeling using generalized neural networks and Kalman fliter algorithm. Proc. of the Ninth National Conference on Artificial Intelligence. (AAAI-91), pp. 762-767. (1991).
Jang, J.S.R., Sun, C.T., Mizutani, E.: Neuro-fuzzy and Soft Computing. Prentice-Hall, New York. (1997).
Jang, J.S.R.: ANFIS: Adaptive-network-based fuzzy inference systems. IEEE Trans. on Systems, Man and Cybernetics. Vol. 23, pp. 665-685 (1992).
Karnik, N.N., Mendel, J.M., Qilian L.: Type-2 fuzzy logic systems. Fuzzy Systems, IEEE Transactions on. vol.7, no.6, pp. 643,658. (1999).
Karnik, N.N., Mendel, J.M.: Applications of type-2 fuzzy logic systems to forecasting of time-series. Inform. Sci. 120, pp. 89–111. (1999).
Kennedy, J., Eberhart, R.: Particle swarm optimization. Neural Networks. Proceedings., IEEE International Conference on. vol. 4. pp. 1942-1948. (1995).
Lee, C.H., Hong, J.L., Lin, Y.C., Lai, W.Y.: Type-2 Fuzzy Neural Network Systems and Learning. International Journal of Computational Cognition 1(4), pp. 79–90. (2003).
Lee, C.-H., Lin, Y.-C.: Type-2 Fuzzy Neuro System Via Input-to-State-Stability Approach. In: Liu, D., Fei, S., Hou, Z., Zhang, H., Sun, C. (eds.) ISNN 2007. LNCS, vol. 4492, pp. 317–327. Springer, Heidelberg (2007).
Lin, Y.-C., Lee, C.-H.: System Identification and Adaptive Filter Using a Novel Fuzzy Neuro System. International Journal of Computational Cognition 5(1) (2007).
Mackey, M.C., Glass, L.: Oscillation and chaos in physiological control systems. Science, Vol. 197, pp. 287-289. (1997).
Mackey, M.C.: Mackey-Glass. McGill University, Canada, http://www.sholarpedia.org/-article/Mackey-Glass_equation, September 5th, (2009).
Mamdani, E.H., Assilian, S.: An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. Man-Mach. Stud. 7, pp. 1–13. (1975).
Melin, P., Soto, J., Castillo, O., Soria, J.: A New Approach for Time Series Prediction Using Ensembles of ANFIS Models. Experts Systems with Applications. Elsevier, Vol. 39, Issue 3, pp 3494-3506. (2012).
Mendel, J.M.: Uncertain rule-based fuzzy logic systems: Introduction and new directions. Ed. USA: Prentice Hall, pp 25-200. (2000).
Mendel, J.M.: Why we need type-2 fuzzy logic systems. Article is provided courtesy of Prentice Hall, By Jerry Mendel. (2001).
Parsopoulos, K.E., Vrahatis, M.N.: Particle Swarm Optimization Intelligence: Advances and Applications. Information Science Reference. USA. pp. 18-40. (2010).
Pedrycz, W.: Fuzzy Evolutionary Computation. Kluwer Academic Publishers, Dordrecht. (1997).
Pedrycz, W.: Fuzzy Modelling: Paradigms and Practice. Kluwer Academic Press, Dordrecht. (1996).
Pulido M., Melin P., Castillo O.: Particle swarm optimization of ensemble neural networks with fuzzy aggregation for time series prediction of the Mexican Stock Exchange. Information Sciences, Volume 280,, pp. 188-204. (2014).
Pulido, M., Mancilla, A., Melin, P.: An Ensemble Neural Network Architecture with Fuzzy Response Integration for Complex Time Series Prediction. Evolutionary Design of Intelligent Systems in Modeling, Simulation and Control, pp. 85-110. (2009).
Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice-Hall, NJ. (2003).
Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: Proceedings of the IEEE congress on evolutionary computation, pp. 69-73. (1998).
Shi, Y., Eberhart, R.: Empirical study of particle swarm optimization. In: Proceedings of the IEEE congress on evolutionary computation, pp. 1945-1950. (1999).
Sollich, P., Krogh, A.: Learning with ensembles: how over-fitting can be useful. in: D.S. Touretzky M.C. Mozer, M.E. Hasselmo (Eds.). Advances in Neural Information Processing Systems 8, Denver, CO, MIT Press, Cambridge, MA, pp. 190-196. (1996).
Soto, J., Melin, P., Castillo, O.: Time series prediction using ensembles of ANFIS models with genetic optimization of interval type-2 and type-1 fuzzy integrators. International Journal Hybrid Intelligent Systems Vol. 11(3): pp. 211-226. (2014).
Takagi T., Sugeno M.: Derivation of fuzzy control rules from human operation control actions.Proc. of the IFAC Symp. on Fuzzy Information, Knowledge Representation and Decision Analysis, pp. 55-60. (1983).
Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst., Man, Cybern. 15, pp. 116–132. (1985).
Wang, C.H., Cheng, C.S., Lee, T.-T.: Dynamical optimal training for interval type-2 fuzzy neural network (T2FNN). IEEE Trans. on Systems, Man, and Cybernetics Part B: Cybernetics 34(3), pp. 1462–1477. (2004).
Wang, C.H., Liu, H.L., Lin, C.T.: Dynamic optimal Learning rate of A Certain Class of Fuzzy Neural Networks and Its Applications with Genetic Algorithm. IEEE Trans. Syst. Man, Cybern. 31(3), pp. 467–475. (2001).
Wu, D., Mendel, J.M.: A Vector Similarity Measure for Interval Type-2 Fuzzy Sets and Type-1 Fuzzy Sets. Information Sciences 178, pp. 381–402. (2008).
Wu, D., Wan Tan, W.: Genetic learning and performance evaluation of interval type-2 fuzzy logic controllers. Engineering Applications of Artificial Intelligence 19(8), pp. 829–841. (2006).
Xiaoyu L., Bing W., Simon Y.: Time Series Prediction Based on Fuzzy Principles. Department of Electrical & Computer Engineering FAMU-FSU College of Engineering, Florida State University Tallahassee, FL 32310, (2002).
Zadeh L. A.: Fuzzy Logic = Computing with Words. IEEE Transactions on Fuzzy Systems, 4(2), 103, (1996).
Zadeh L. A.: Fuzzy Logic. Computer, Vol. 1, No. 4, pp. 83-93. (1988).
Zadeh, L.A.: Fuzzy Logic, Neural Networks and Soft Computing. Communications of the ACM 37(3), pp. 77–84. (1994).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this chapter
Cite this chapter
Soto, J., Melin, P., Castillo, O. (2017). Particle Swarm Optimization of the Fuzzy Integrators for Time Series Prediction Using Ensemble of IT2FNN Architectures. In: Melin, P., Castillo, O., Kacprzyk, J. (eds) Nature-Inspired Design of Hybrid Intelligent Systems. Studies in Computational Intelligence, vol 667. Springer, Cham. https://doi.org/10.1007/978-3-319-47054-2_9
Download citation
DOI: https://doi.org/10.1007/978-3-319-47054-2_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-47053-5
Online ISBN: 978-3-319-47054-2
eBook Packages: EngineeringEngineering (R0)