Nothing Special   »   [go: up one dir, main page]

Skip to main content

Consistency Verification of Specification Rules

  • Conference paper
  • First Online:
Formal Methods and Software Engineering (ICFEM 2015)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 9407))

Included in the following conference series:

Abstract

This paper focuses on the consistency analysis of specification rules expressing relationships between input and expected output of systems. We identified the link between Minimal Inconsistent Sets (MISes) of rules and Minimal Unsatisfiable Subsets (MUSes) of constraints. For practical consistency verification of rules, we developed a novel algorithm using SMT solvers for fast enumeration of MUSes. We evaluated the algorithm using publicly available benchmarks. Finally, we used the approach to verify the consistency of specifications rules extracted from real-world case studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    \(S \subset T\) means that S is a proper-subset of T.

  2. 2.

    Available from http://smtlib.cs.uiowa.edu/benchmarks.shtml.

References

  1. Abrial, J.-R.: Modeling in Event-B: System and Software Engineering. Cambridge University Press, New York (2010)

    Book  MATH  Google Scholar 

  2. Abrial, J.-R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin: an open toolset for modelling and reasoning in Event-B. STTT 12(6), 447–466 (2010)

    Article  Google Scholar 

  3. Bailey, J., Stuckey, P.J.: Discovery of minimal unsatisfiable subsets of constraints using hitting set dualization. In: Hermenegildo, M.V., Cabeza, D. (eds.) PADL 2004. LNCS, vol. 3350, pp. 174–186. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  4. Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theories. In: Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications, vol. 185, pp. 825–885. IOS Press (2009)

    Google Scholar 

  5. Belov, A., Manthey, N., Marques-Silva, J.: Parallel MUS extraction. In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 133–149. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  6. Belov, A., Marques-Silva, J.: MUSer2: an efficient MUS extractor. JSAT 8(1/2), 123–128 (2012)

    MATH  Google Scholar 

  7. Berstel, B., Leconte, M.: Using constraints to verify properties of rule programs. ICST 2010, 349–354 (2010)

    Google Scholar 

  8. Christ, J., Hoenicke, J., Nutz, A.: SMTInterpol: an interpolating SMT solver. In: Donaldson, A., Parker, D. (eds.) SPIN 2012. LNCS, vol. 7385, pp. 248–254. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  9. Hoang, T.S., Itoh, S., Oyama, K., Miyazaki, K., Kuruma, H., Sato, N.: Validating the consistency of specification rules. http://deploy-eprints.ecs.soton.ac.uk/465/ (2015)

  10. Liffiton, M.H., Malik, A.: Enumerating infeasibility: finding multiple MUSes quickly. In: Gomes, C., Sellmann, M. (eds.) CPAIOR 2013. LNCS, vol. 7874, pp. 160–175. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  11. Liffiton, M.H., Sakallah, K.A.: Algorithms for computing minimal unsatisfiable subsets of constraints. J. Autom. Reasoning 40(1), 1–33 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ligeza, A.: Logical Foundations for Rule-Based Systems. Studies in Computational Intelligence, vol. 11, 2nd edn. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  13. Nadel, A., Ryvchin, V., Strichman, O.: Efficient MUS extraction with resolution. In: FMCAD 2013, pp. 197–200. IEEE (2013)

    Google Scholar 

  14. Berstel-Da Silva, B.: Verification of Business Rules Programs. Springer, Heidelberg (2014)

    Book  Google Scholar 

  15. Wieringa, S.: Understanding, improving and parallelizing MUS finding using model rotation. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 672–687. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinji Itoh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Hoang, T.S., Itoh, S., Oyama, K., Miyazaki, K., Kuruma, H., Sato, N. (2015). Consistency Verification of Specification Rules. In: Butler, M., Conchon, S., Zaïdi, F. (eds) Formal Methods and Software Engineering. ICFEM 2015. Lecture Notes in Computer Science(), vol 9407. Springer, Cham. https://doi.org/10.1007/978-3-319-25423-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25423-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25422-7

  • Online ISBN: 978-3-319-25423-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics