Nothing Special   »   [go: up one dir, main page]

Skip to main content

Understanding, Improving and Parallelizing MUS Finding Using Model Rotation

  • Conference paper
Principles and Practice of Constraint Programming (CP 2012)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 7514))

Abstract

Recently a new technique for improving algorithms for extracting Minimal Unsatisfiable Subsets (MUSes) from unsatisfiable CNF formulas called “model rotation” was introduced [Marques-Silva et. al. SAT2011]. The technique aims to reduce the number of times a MUS finding algorithm needs to call a SAT solver. Although no guarantees for this reduction are provided the technique has been shown to be very effective in many cases. In fact, such model rotation algorithms are now arguably the state-of-the-art in MUS finding.

This work analyses the model rotation technique in detail and provides theoretical insights that help to understand its performance. These new insights on the operation of model rotation lead to several modifications and extensions that are empirically evaluated. Moreover, it is demonstrated how such MUS extracting algorithms can be effectively parallelized using existing techniques for parallel incremental SAT solving.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Belov, A., Lynce, I., Marques-Silva, J.P.: Towards efficient MUS extraction (2012) (to appear in AI Communications)

    Google Scholar 

  2. Belov, A., Marques-Silva, J.P.: Accelerating MUS extraction with recursive model rotation. In: FMCAD, pp. 37–40 (2011)

    Google Scholar 

  3. Belov, A., Marques-Silva, J.P.: MUSer2: An efficient MUS extractor (2012), to appear in proceedings of Pragmatics of SAT (POS)

    Google Scholar 

  4. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic Model Checking without BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  5. Cook, S.A.: The complexity of theorem-proving procedures. In: Harrison, M.A., Banerji, R.B., Ullman, J.D. (eds.) STOC, pp. 151–158. ACM (1971)

    Google Scholar 

  6. Eén, N., Sörensson, N.: An Extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  7. Goldberg, E.I., Novikov, Y.: Verification of proofs of unsatisfiability for CNF formulas. In: DATE, pp. 10886–10891. IEEE Computer Society (2003)

    Google Scholar 

  8. Grégoire, É., Mazure, B., Piette, C.: On approaches to explaining infeasibility of sets of boolean clauses. In: ICTAI (1), pp. 74–83. IEEE Computer Society (2008)

    Google Scholar 

  9. Junker, U.: QUICKXPLAIN: Preferred explanations and relaxations for over-constrained problems. In: McGuinness, D.L., Ferguson, G. (eds.) AAAI, pp. 167–172. AAAI Press/The MIT Press (2004)

    Google Scholar 

  10. van Maaren, H., Wieringa, S.: Finding Guaranteed MUSes Fast. In: Kleine Büning, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 291–304. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  11. Marques-Silva, J.P., Planes, J.: Algorithms for maximum satisfiability using unsatisfiable cores. In: DATE, pp. 408–413. IEEE (2008)

    Google Scholar 

  12. Marques-Silva, J.P.: Minimal unsatisfiability: Models, algorithms and applications (invited paper). In: ISMVL, pp. 9–14. IEEE Computer Society (2010)

    Google Scholar 

  13. Marques-Silva, J., Lynce, I.: On Improving MUS Extraction Algorithms. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 159–173. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  14. Marques-Silva, J.P., Sakallah, K.A.: GRASP: A search algorithm for propositional satisfiability. IEEE Trans. Computers 48(5), 506–521 (1999)

    Article  MathSciNet  Google Scholar 

  15. Oh, Y., Mneimneh, M.N., Andraus, Z.S., Sakallah, K.A., Markov, I.L.: AMUSE: a minimally-unsatisfiable subformula extractor. In: Malik, S., Fix, L., Kahng, A.B. (eds.) DAC, pp. 518–523. ACM (2004)

    Google Scholar 

  16. Papadimitriou, C.H., Wolfe, D.: The complexity of facets resolved. J. Comput. Syst. Sci. 37(1), 2–13 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  17. Sinz, C.: Visualizing SAT instances and runs of the DPLL algorithm. J. Autom. Reasoning 39(2), 219–243 (2007)

    Article  MATH  Google Scholar 

  18. Sinz, C., Kaiser, A., Küchlin, W.: Formal methods for the validation of automotive product configuration data. AI EDAM 17(1), 75–97 (2003)

    Google Scholar 

  19. Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1(2), 146–160 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  20. Wieringa, S., Niemenmaa, M., Heljanko, K.: Tarmo: A framework for parallelized bounded model checking. In: Brim, L., van de Pol, J. (eds.) PDMC. EPTCS, vol. 14, pp. 62–76 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wieringa, S. (2012). Understanding, Improving and Parallelizing MUS Finding Using Model Rotation. In: Milano, M. (eds) Principles and Practice of Constraint Programming. CP 2012. Lecture Notes in Computer Science, vol 7514. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33558-7_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33558-7_49

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33557-0

  • Online ISBN: 978-3-642-33558-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics