Abstract
Recently a new technique for improving algorithms for extracting Minimal Unsatisfiable Subsets (MUSes) from unsatisfiable CNF formulas called “model rotation” was introduced [Marques-Silva et. al. SAT2011]. The technique aims to reduce the number of times a MUS finding algorithm needs to call a SAT solver. Although no guarantees for this reduction are provided the technique has been shown to be very effective in many cases. In fact, such model rotation algorithms are now arguably the state-of-the-art in MUS finding.
This work analyses the model rotation technique in detail and provides theoretical insights that help to understand its performance. These new insights on the operation of model rotation lead to several modifications and extensions that are empirically evaluated. Moreover, it is demonstrated how such MUS extracting algorithms can be effectively parallelized using existing techniques for parallel incremental SAT solving.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Belov, A., Lynce, I., Marques-Silva, J.P.: Towards efficient MUS extraction (2012) (to appear in AI Communications)
Belov, A., Marques-Silva, J.P.: Accelerating MUS extraction with recursive model rotation. In: FMCAD, pp. 37–40 (2011)
Belov, A., Marques-Silva, J.P.: MUSer2: An efficient MUS extractor (2012), to appear in proceedings of Pragmatics of SAT (POS)
Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic Model Checking without BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207. Springer, Heidelberg (1999)
Cook, S.A.: The complexity of theorem-proving procedures. In: Harrison, M.A., Banerji, R.B., Ullman, J.D. (eds.) STOC, pp. 151–158. ACM (1971)
Eén, N., Sörensson, N.: An Extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)
Goldberg, E.I., Novikov, Y.: Verification of proofs of unsatisfiability for CNF formulas. In: DATE, pp. 10886–10891. IEEE Computer Society (2003)
Grégoire, É., Mazure, B., Piette, C.: On approaches to explaining infeasibility of sets of boolean clauses. In: ICTAI (1), pp. 74–83. IEEE Computer Society (2008)
Junker, U.: QUICKXPLAIN: Preferred explanations and relaxations for over-constrained problems. In: McGuinness, D.L., Ferguson, G. (eds.) AAAI, pp. 167–172. AAAI Press/The MIT Press (2004)
van Maaren, H., Wieringa, S.: Finding Guaranteed MUSes Fast. In: Kleine Büning, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 291–304. Springer, Heidelberg (2008)
Marques-Silva, J.P., Planes, J.: Algorithms for maximum satisfiability using unsatisfiable cores. In: DATE, pp. 408–413. IEEE (2008)
Marques-Silva, J.P.: Minimal unsatisfiability: Models, algorithms and applications (invited paper). In: ISMVL, pp. 9–14. IEEE Computer Society (2010)
Marques-Silva, J., Lynce, I.: On Improving MUS Extraction Algorithms. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 159–173. Springer, Heidelberg (2011)
Marques-Silva, J.P., Sakallah, K.A.: GRASP: A search algorithm for propositional satisfiability. IEEE Trans. Computers 48(5), 506–521 (1999)
Oh, Y., Mneimneh, M.N., Andraus, Z.S., Sakallah, K.A., Markov, I.L.: AMUSE: a minimally-unsatisfiable subformula extractor. In: Malik, S., Fix, L., Kahng, A.B. (eds.) DAC, pp. 518–523. ACM (2004)
Papadimitriou, C.H., Wolfe, D.: The complexity of facets resolved. J. Comput. Syst. Sci. 37(1), 2–13 (1988)
Sinz, C.: Visualizing SAT instances and runs of the DPLL algorithm. J. Autom. Reasoning 39(2), 219–243 (2007)
Sinz, C., Kaiser, A., Küchlin, W.: Formal methods for the validation of automotive product configuration data. AI EDAM 17(1), 75–97 (2003)
Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1(2), 146–160 (1972)
Wieringa, S., Niemenmaa, M., Heljanko, K.: Tarmo: A framework for parallelized bounded model checking. In: Brim, L., van de Pol, J. (eds.) PDMC. EPTCS, vol. 14, pp. 62–76 (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Wieringa, S. (2012). Understanding, Improving and Parallelizing MUS Finding Using Model Rotation. In: Milano, M. (eds) Principles and Practice of Constraint Programming. CP 2012. Lecture Notes in Computer Science, vol 7514. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33558-7_49
Download citation
DOI: https://doi.org/10.1007/978-3-642-33558-7_49
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-33557-0
Online ISBN: 978-3-642-33558-7
eBook Packages: Computer ScienceComputer Science (R0)