Abstract
Rough set theory (RST) is one of the data mining tools, which have many capabilities such as to minimize the size of an input data and to produce sets of decision rules from a set of data. RST is also one of the great techniques used in dealing with ambiguity and uncertainty of datasets. It was introduced by Z. Pawlak in 1997 and until now, there are many researchers who really make use of its advantages either to make an enhancement of the RST or to apply in various research areas such as in decision analysis, pattern recognition, machine learning, intelligent systems, inductive reasoning, data preprocessing, knowledge discovery, and expert systems. This paper presents a recent study on the elementary concepts of RST and its implementation in the multi-criteria decision analysis (MCDA) problems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Pawlak, Z.: Rough set approach to knowledge-based decision support. Eur. J. Oper. Res. 99, 48–57 (1997)
Mahajan, P., Kandwal, R., Vijay, R.: Rough Set Approach in Machine Learning: A Review. Int. J. Comput. Appl. 56(10), 1–13 (2012)
Li, R., Wang, Z.: Mining classification rules using rough sets and neural networks. Eur. J. Oper. Res. 157, 439–448 (2004)
Lin, G., Liang, J., Qian, Y.: Multigranulation rough sets: From partition to covering. Inf. Sci. (Ny) 241, 101–118 (2013)
Nguyen, H.S., Skowron, A.: Rough Sets: From Rudiments to Challenges. In: Intell. Syst. Ref. Libr., vol. 42, pp. 75–173 (2013)
Fan, T.-F., Liau, C.-J., Liu, D.-R.: Dominance-based fuzzy rough set analysis of uncertain and possibilistic data tables. Int. J. Approx. Reason. 52(9), 1283–1297 (2011)
Liao, S.-H., Chen, Y.-J.: A rough set-based association rule approach implemented on exploring beverages product spectrum. Appl. Intell. 40, 464–478 (2013)
Wang, C.H., Chin, Y.C., Tzeng, G.H.: Mining the R&D innovation performance processes for high-tech firms based on rough set theory. Technovation 30(7–8), 447–458 (2010)
Ishizaka, A., Pearman, C., Nemery, P.: AHPSort: an AHP-based method for sorting problems. Int. J. Prod. Res. 50, 4767–4784 (2012)
Wu, W., Kou, G., Peng, Y., Ergu, D.: Improved AHP-group decision making for investment strategy selection. Technol. Econ. Dev. Econ. 18(2), 299–316 (2012)
Karami, J., Alimohammadi, A., Seifouri, T.: Water quality analysis using a variable consistency dominance-based rough set approach. Comput. Environ. Urban Syst. 43, 25–33 (2014)
Pawlak, Z.: Rough set theory and its applications. J. Telecommun. Inf. Technol. 29, 7–10 (1998)
Ali, R., Siddiqi, M.H., Lee, S.: Rough set-based approaches for discretization : a compact review (2015)
Błaszczy, J., Greco, S., Matarazzo, B., Słowi, R.: jMAF - Dominance-Based Rough Set Data, pp. 185–209
Hu, Y.C.: Rough sets for pattern classification using pairwise-comparison-based tables. Appl. Math. Model. 37(12–13), 7330–7337 (2013)
Liang, J., Wang, F., Dang, C., Qian, Y.: An efficient rough feature selection algorithm with a multi-granulation view. Int. J. Approx. Reason. 53(6), 912–926 (2012)
Vol, F., Computing, O.F., No, D.S., Ciznicki, M., Kurowski, K., We, J.: Evaluation of Selected Resource Allocation Many-Core Processors and Graphics. 3 (2014)
Keeney, R.L.: Decision Analysis: An Overview. Operations Research 30, 803–838 (1982)
Chai, J., Liu, J.N.K.: Dominance-based decision rule induction for multicriteria ranking. Int. J. Mach. Learn. Cybern. 4, 427–444 (2013)
Borgonovo, E., Marinacci, M.: Decision analysis under ambiguity. Eur. J. Oper. Res. 000, 1–14 (2015)
Greco, S., Słowiński, R., Zielniewicz, P.: Putting Dominance-based Rough Set Approach and robust ordinal regression together. Decis. Support Syst. 54, 891–903 (2013)
Szela̧g, M., Greco, S., Słowiński, R.: Variable consistency dominance-based rough set approach to preference learning in multicriteria ranking. Inf. Sci. (Ny) 277, 525–552 (2014)
Chai, J., Liu, J.N.K., Ngai, E.W.T.: Application of decision-making techniques in supplier selection: A systematic review of literature. Expert Syst. Appl. 40(10), 3872–3885 (2013)
Kavita, Yadav, S.P., Kumar, S.: A Multi-criteria Interval-valued intuitionistic fuzzy group decision making for supplier selection with TOPSIS method. In: Sakai, H., Chakraborty, M.K., Hassanien, A.E., Ślęzak, D., Zhu, W. (eds.) RSFDGrC 2009. LNCS, vol. 5908, pp. 303–312. Springer, Heidelberg (2009)
Vahdani, B., Hadipour, H., Tavakkoli-Moghaddam, R.: Soft computing based on interval valued fuzzy ANP-A novel methodology. J. Intell. Manuf. 23, 1529–1544 (2012)
Fernandez, E., Lopez, E., Bernal, S., Coello Coello, C., Navarro, J.: Evolutionary multiobjective optimization using an outranking-based dominance generalization. Comput. Oper. Res. 37(2), 390–395 (2010)
Durbach, I.N., Stewart, T.J.: Modeling uncertainty in multi-criteria decision analysis. Eur. J. Oper. Res. 223(1), 1–14 (2012)
Chakhar, S., Saad, I.: Dominance-based rough set approach for groups in multicriteria classification problems. Decis. Support Syst. 54(1), 372–380 (2012)
Velasquez, M., Hester, P.T.: An Analysis of Multi-Criteria Decision Making Methods. Int. J. Oper. Res. 10(2), 56–66 (2013)
Cinelli, M., Coles, S.R., Kirwan, K.: Analysis of the potentials of multi criteria decision analysis methods to conduct sustainability assessment. Ecol. Indic. 46, 138–148 (2014)
Huang, B., Wei, D., Li, H., Zhuang, Y.: Using a rough set model to extract rules in dominance-based interval-valued intuitionistic fuzzy information systems. Inf. Sci. (Ny) 221, 215–229 (2012)
Aydogan, E.K.: Performance measurement model for Turkish aviation firms using the rough-AHP and TOPSIS methods under fuzzy environment. Expert Syst. Appl. 38, 3992–3998 (2011)
Lee, C., Lee, H., Seol, H., Park, Y.: Evaluation of new service concepts using rough set theory and group analytic hierarchy process. Expert Syst. Appl. 39(3), 3404–3412 (2012)
Dutta, M., Husain, Z.: An application of Multicriteria Decision Making to built heritage. The case of Calcutta. J. Cult. Herit. 10, 237–243 (2009)
Devi, K., Yadav, S.P.: A multicriteria intuitionistic fuzzy group decision making for plant location selection with ELECTRE method. Int. J. Adv. Manuf. Technol. 66, 1219–1229 (2013)
Lee, C.S.: A rough-fuzzy hybrid approach on a Neuro-Fuzzy classifier for high dimensional data. In: Proc. Int. Jt. Conf. Neural Networks, pp. 2764–2769 (2011)
Chai, J., Liu, J.N.K.: Class-based rough approximation with dominance principle. In: Proc. - 2011 IEEE Int. Conf. Granul. Comput. GrC 2011, pp. 77–82 (2011)
Tzeng, K.S.G.: A decision rule-based soft computing model for supporting financial performance improvement of the banking industry (2014)
Liou, J.J.H., Yen, L., Tzeng, G.H.: Using decision rules to achieve mass customization of airline services. Eur. J. Oper. Res. 205(3), 680–686 (2010)
Hu, M., Shen, F., Chen, Y., Wang, J.: Method of multi-attribute decision analysis based on rough sets dealing with grey information. In: 2011 IEEE Int. Conf. Syst. Man, Cybern., no. 90924022, pp. 1457–1462 (2011)
Hu, M., Shen, F., Chen, Y.: A multi-attribute decision analysis method based on rough sets dealing with uncertain information. In: Proc. 2011 IEEE Int. Conf. Grey Syst. Intell. Serv., pp. 576–581 (2011)
Miao, D., Duan, Q., Zhang, H., Jiao, N.: Rough set based hybrid algorithm for text classification. Expert Syst. Appl. 36(5), 9168–9174 (2009)
Błaszczyński, J., Greco, S., Słowiński, R.: Inductive discovery of laws using monotonic rules. Eng. Appl. Artif. Intell. 25, 284–294 (2012)
Augeri, M.G., Colombrita, R., Greco, S., Lo Certo, A., Matarazzo, B., Slowinski, R.: Dominance-Based Rough Set Approach to Budget Allocation in Highway Maintenance Activities. J. Infrastruct. Syst. 17(June), 75–85 (2011)
Greco, S., Matarazzo, B., Słowinski, R.: Interactive Evolutionary Multiobjective Optimization using Dominance-based Rough Set Approach (2010)
Phillips, L.D.: How Raiffa’s RAND memo led to a multi-criteria computer program 23(July 2013), 3–23 (2006)
Liou, J.J.H.: Variable Consistency Dominance-based Rough Set Approach to formulate airline service strategies. Appl. Soft Comput. J. 11(5), 4011–4020 (2011)
Chai, J., Liu, J.N.K.: A novel believable rough set approach for supplier selection. Expert Syst. Appl. 41(1), 92–104 (2014)
Capotorti, A., Barbanera, E.: Credit scoring analysis using a fuzzy probabilistic rough set model. Comput. Stat. Data Anal. 56(4), 981–994 (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Mohamad, M., Selamat, A., Krejcar, O., Kuca, K. (2015). A Recent Study on the Rough Set Theory in Multi-Criteria Decision Analysis Problems. In: Núñez, M., Nguyen, N., Camacho, D., Trawiński, B. (eds) Computational Collective Intelligence. Lecture Notes in Computer Science(), vol 9330. Springer, Cham. https://doi.org/10.1007/978-3-319-24306-1_26
Download citation
DOI: https://doi.org/10.1007/978-3-319-24306-1_26
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-24305-4
Online ISBN: 978-3-319-24306-1
eBook Packages: Computer ScienceComputer Science (R0)