Abstract
Rough set theory is a very effective multi-attribute decision analysis tool. The paper reviews four decision-oriented rough set models and methods: dominance-based rough set, three-way decisions, multigranulation decision-theoretic rough set and rough set based multi-attribute group decision-making model. We also introduce some of our group’s works under these four models. Several future research directions of decision-oriented rough sets are presented in the end of the paper.
Similar content being viewed by others
References
Zopounidis, C., Doumpos, M.: Multicriteria classification and sorting methods: a literature review. Eur. J. Oper. Res. 138, 229–246 (2002)
Hwang, C.L., Yoon, K.: Multiple Attribute Decision Making-Methods and Applications: A State of the Art Survey. Lecture Notes in Economics and Mathematical Systems. Springer-Verlag, New York (1981)
Saaty, T.L.: The Analytic Hierarchy Process. McGraw-Hill, Now York (1980)
Benayoun, R., Roy, B., Sussman, N.: Manual de refrence du programme electre. Note de Synthese et Formation, No. 25. Paris: Direction Scientifique SEMA (1966)
Brans, J.P., Mareschal, B.: The promethee vi procedure: how to differentiate hard from soft multicriteria problems. J. Decis. Syst. 4, 213–223 (1995)
Hwang, C.L., Lai, Y.J., Liu, T.Y.: A new approach for multiple objective decision making. Comput. Oper. Res. 20, 889–899 (1993)
Pawlak, Z.: Rough sets. Int. J. Comput. Inf. Sci. 11, 341–356 (1982)
Pawkak, Z.: Rough set approach to knowledge-based decision support. Eur. J. Oper. Res. 99, 48–57 (1997)
Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Boston (1991)
Greco, S., Matarazzo, B., Slowinski, R.: Rough approximation of a preference relation by dominance relations. Eur. J. Oper. Res. 117, 63–83 (1999)
Skowron, A., Rauszer, C.: The Discernibility Matrices and Functions in Information Systems. In: Slowinski, R. (eds.) Intelligent Decision Support - Handbook of Applications and Advances of the Rough Sets Theory, vol. 11, pp. 331–362. Springer (1991)
Wang, G.Y., Yu, H., Yang, D.C.: Decision table reduction based on conditional information entropy. Chin. J. Comput. 25, 759–766 (2002)
Liang, J.Y., Wang, F., Dang, C.Y., Qian, Y.H.: An efficient rough feature selection algorithm with a multi-granulation view. Int. J. Approx. Reason. 53, 912–926 (2010)
Liang, J.Y., Wang, F., Dang, C.Y., Qian, Y.H.: A group incremental approach to feature selection applying rough set technique. IEEE Trans. Knowl. Data Eng. 26, 294–308 (2014)
Slezak, D.: Approximate entropy reducts. Fund. Inform. 53, 365–390 (2002)
Grzymala-Busse, J.W.: LERS: A system for learning from examples based on rough sets. In: Slowinski, R. (ed.) Intelligent Decision Support: Handbook of Applications and Advances of the Rough Set theory, vol. 11, pp. 3–18. Kluwer Academic Publishers, Dordrecht (1992)
Greco, S., Matarazzo, B., Slowinski, R.: The use of rough sets and fuzzy sets in MCDM. In: Gal, T., Hanne, T., Stewart, T. (eds.) Advances in Multiple Criteria decision Making. Kluwer Academic Publishers, Dordrecht (1999)
Grzymala-Busse, J.W., Stefanowski, J.: Three discretization methods for rule induction. Int. J. Intell. Syst. 26, 29–38 (2001)
Leung, Y., Fischer, M.M., Wu, W.Z., Mi, J.S.: A rough set approach for the discovery of classification rules in interval-valued information systems. Int. J. Approx. Reason. 47, 233–246 (2008)
Dubois, D., Prade, H.: Rough fuzzy sets and fuzzy rough sets. Int. J. Gen. Syst. 17, 191–209 (1990)
Dubois, D., Prade, H.: Putting rough sets and fuzzy sets together. In: Slowinski, R. (ed.) Intelligent Decision Support: Handbook of Applications and Advances of the Rough Sets Theory, vol. 11, pp. 203–232. Kluwer Academic Publishers, Dordrecht (1992)
Hu, Q.H., Xie, Z.X., Yu, D.R.: Hybrid attribute reduction based on a novel fuzzy rough model and information granulation. Pattern Recogn. 40, 3509–3521 (2007)
Greco, S., Matarazzo, B., Slowinski, R.: Rough sets theory for multicriteria decision analysis. Eur. J. Oper. Res. 129, 1–7 (2001)
Greco, S., Matarazzo, B., Slowinski, R.: Rough sets methodology for sorting problems in presence of multiple attributes and criteria. Eur. J. Oper. Res. 138, 247–259 (2002)
Greco, S., Matarazzo, B., Slowinski, R., Zanakis, S.: Global investing risk: a case study of knowledge assessment via rough sets. Annal Oper. Res. 185, 105–138 (2011)
Greco, S., Slowinski, R., Zielniewicz, P.: Putting dominance-based rough set approach and robust ordinal regression together. Dec. Support Syst. 54, 891–903 (2013)
Wong, S.K.M., Ziarko, W.: Comparison of the probabilistic approximate classification and the fuzzy set model. Fuzzy Sets Syst. 21, 357–362 (1987)
Pawlak, Z., Wong, S.K.M., Ziarko, W.: Rough sets: probabilistic versus deterministic approach. Int. J. Man-Mach. Stud. 29, 81–95 (1988)
Ziarko, W.: Variable precision rough set model. J. Comput. Syst. Sci. 46, 39–59 (1993)
Yao, Y.Y., Wong, S.K.M.: A decisoin theoretic framework for approximating concepts. Int. J. Man-Mach. Stud. 37, 793–809 (1992)
Yao, Y.Y., Zhou, B.: Naive Bayesian Rough Sets. In: Yu, J., Greco, S., Lingras, P., Wang, G., Skowron, A. (eds.) RSKT 2010. LNCS (LNAI), vol. 6401, pp. 719–726. Springer, Heidelberg (2010)
Zhu, W., Wang, F.Y.: Reduction and axiomization of covering generalized rough sets. Inf. Sci. 152, 217–230 (2003)
Qian, Y.H., Liang, J.Y., Yao, Y.Y., Dang, C.Y.: MGRS: A multi-granulation rough set. Inf. Sci. 180, 949–970 (2010)
Yang, X.B., Song, X.N., Chen, Z.H., Yang, J.Y.: On multi-granulation rough sets in incomplete information system. Int. J. Mach. Learn. Cyber. 3, 223–232 (2011)
Xu, W.H., Sun, W.X., Zhang, X.Y., Zhang, W.X.: Multiple granulation rough set approach to ordered information systems. Inter. J. General Syst. 41, 475–501 (2012)
Lin, G.P., Liang, J.Y., Qian, Y.H.: Multigranulation rough sets: from partition to covering. Inf. Sci. 241, 101–118 (2013)
Liou, J.J.H., Tzeng, G.H.: A dominance-based rough set approach to customer behavior in the airline market. Inf. Sci. 180, 2230–2238 (2010)
Hu, Q.H., Yu, D.R., Guo, M.Z.: Fuzzy preference based rough sets. Inf. Sci. 180, 2003–2022 (2010)
Szelag, M., Greco, S., Slowinski, R.: Variable consistency dominance-based rough set approach to preference learning in multicriteria ranking. Inf. Sci. 277, 525–552 (2014)
Song, P., Liang, J.Y., Qian, Y.H.: A two-grade approach to ranking interval data. Knowl.-Based Syst. 27, 234–244 (2012)
Yao, Y.Y.: An Outline of a Theory of Three-Way Decisions. In: Yao, J., Yang, Y., Słowiński, R., Greco, S., Li, H., Mitra, S., Polkowski, L. (eds.) RSCTC 2012. LNCS (LNAI), vol. 7413, pp. 1–17. Springer, Heidelberg (2012)
Yao, Y.Y., Wong, S.K.M., Lingras, P.: A decision-theoretic rough set model. In: Ras, Z.W., Zemankova, M., Emrich, M.L. (eds.) Methodologies for Intelligent Systems, vol. 5, pp. 17–25. North-Holland, New York (1990)
Greco, S., Słowiński, R., Yao, Y.Y.: Bayesian Decision Theory for Dominance-Based Rough Set Approach. In: Yao, J.T., Lingras, P., Wu, W.-Z., Szczuka, M.S., Cercone, N.J., Ślȩzak, D. (eds.) RSKT 2007. LNCS (LNAI), vol. 4481, pp. 134–141. Springer, Heidelberg (2007)
Herbert, J.P., Yao, J.T.: Game-Theoretic Risk Analysis in Decision-Theoretic Rough Sets. In: Wang, G., Li, T., Grzymala-Busse, J.W., Miao, D., Skowron, A., Yao, Y. (eds.) RSKT 2008. LNCS (LNAI), vol. 5009, pp. 132–139. Springer, Heidelberg (2008)
Liang, D.C., Liu, D.: Deriving three-way decisions from intuitionistic fuzzy decision theoretic rough sets. Inf. Sci. 200, 28–48 (2015)
Yao, Y.Y.: Granular Computing and Sequential Three-Way Decisions. In: Lingras, P., Wolski, M., Cornelis, C., Mitra, S., Wasilewski, P. (eds.) RSKT 2013. LNCS (LNAI), vol. 8171, pp. 16–27. Springer, Heidelberg (2013)
Wang, B.L., Liang, J.Y.: A Novel Intelligent Multi-attribute Three-Way Group Sorting Method Based on Dempster-Shafer Theory. In: Miao, D.Q., Pedrycz, W., Slezak, D., Peters, G., Hu, Q., Wang, R. (eds.) RSKT 2014. LNCS (LNAI), vol. 8818, pp. 789–800. Springer, Heidelberg (2014)
Qian, Y.H., Zhang, H., Sang, Y.L., Liang, J.Y.: Multi-granulation decision-theoretic rough sets. Int. J. Approx. Reason. 55, 225–237 (2014)
Liang, J.Y., Wang, B.L.: Rough set based multi-attribute group decision making model. In: Jia, X.Y., Shang, L., Zhou X. Z. et al. Three-way Decision Theory and Applications, pp. 131–148. Nanjing University Press, Nanjing (2012)
Pang, J.F., Liang, J.Y.: Evaluation of the results of multi-attribute group decision-making with linguistic information. OMEGA 40, 294–301 (2012)
Acknowledgments
This work was supported by the National Natural Science Foundation of China (Nos. 61432011, U1435212), Research Project Supported by Shanxi Scholarship Council of China (No. 2013-101), the Key Problems in Science and Technology Project of Shanxi Province (No. 20110321027-01) and the Construction Project of the Science and Technology Basic Condition Platform of Shanxi Province (No. 2012091002-0101).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Liang, J. (2015). Decision-Oriented Rough Set Methods. In: Yao, Y., Hu, Q., Yu, H., Grzymala-Busse, J.W. (eds) Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing. Lecture Notes in Computer Science(), vol 9437. Springer, Cham. https://doi.org/10.1007/978-3-319-25783-9_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-25783-9_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-25782-2
Online ISBN: 978-3-319-25783-9
eBook Packages: Computer ScienceComputer Science (R0)