Abstract
We propose a decidable formal theory which describes high-level properties of abstract continuous-time dynamical systems called Nondeterministic Complete Markovian Systems (NCMS). NCMS is a rather general class of systems which can represent discrete and/or continuous evolutions in continuous time and which is sufficient for modeling a wide range of real-time information processing and cyber-physical systems (CPS). We illustrate the obtained results with a proof of the mutual exclusion property of a CPS which implements Peterson’s algorithm.
This work was supported in part by the research project No. 11BF015-02 “Formal specifications and methods of development of reliable software systems”, Taras Shevchenko National University of Kyiv, Ukraine.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Baheti, R., Gill, H.: Cyber-physical systems. In: Samad, T., Annaswamy, A. (eds.) The Impact of Control Technology, pp. 161–166. IEEE, New York (2011)
Lee, E.A., Seshia, S.A.: Introduction to embedded systems: a cyber-physical systems approach. Lulu.com (2013)
Shi, J., Wan, J., Yan, H., Suo, H.: A survey of cyber-physical systems. In: 2011 International Conference on Wireless Communications and Signal Processing (WCSP), pp. 1–6. IEEE (2011)
Sunder, S.S., et al. (originator): Cyber-physical systems - a concept map. http://cyberphysicalsystems.org/
Barbashin, E.: Introduction to Stability Theory. Nauka (in Russian), Moscow (1967)
Emelyanov, S.: Variable Structure Systems. Nauka (in Russian), Moscow (1967)
Utkin, V.I.: Sliding Modes in Control and Optimization. Communications and Control Engineering. Springer, Heidelberg (1992)
Samoilenko, A., Perestyuk, N.: Impulsive Differential Equations. World Scientific, Singapore and River Edge (1995)
Lakshmikantham, V., Banov, D.D., Simeonov, P.S.: Theory of Impulsive Differential Equations. World Scientific Publishing Company, Singapore (1989)
Filippov, A.: Differential Equations with Discontinuous Righthand Sides: Control Systems. Mathematics and Its Applications. Springer, New York (1988)
Liberzon, D.: Switching in Systems and Control. Systems & Control: Foundations & Applications. Birkhauser Boston Inc., Boston (2003)
Witsenhausen, H.: A class of hybrid-state continuous-time dynamic systems. IEEE Trans. Autom. Control 11, 161–167 (1966)
Tavernini, L.: Differential automata and their discrete simulators. Nonlinear Anal. Theor. Methods Appl. 11, 665–683 (1987)
Nerode, A., Kohn, W.: Models for hybrid systems: automata, topologies, controllability, observability. In: Grossman, R.L., Nerode, A., Ravn, A.P., Rischel, H. (eds.) HS 1991 and HS 1992. LNCS, vol. 736, pp. 317–356. Springer, Heidelberg (1993)
Branicky, M.S.: Studies in hybrid systems: modeling, analysis, and control. Ph.D. thesis, Massachusetts Institute of Technology (1995)
Goebel, R., Sanfelice, R.G., Teel, A.: Hybrid dynamical systems. IEEE Control Syst. Mag. 29, 28–93 (2009)
Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.H.: Hybrid automata: an algorithmic approach to the specification and verification of hybrid systems. In: Grossman, R.L., Nerode, A., Ravn, A.P., Rischel, H. (eds.) HS 1991 and HS 1992. LNCS, vol. 736, pp. 209–229. Springer, Heidelberg (1993)
Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.H., Nicollin, X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems. Theoret. Comput. Sci. 138, 3–34 (1995)
Henzinger, T.A.: The theory of hybrid automata. In: Proceedings of Eleventh Annual IEEE Symposium Logic in Computer Science LICS ’96, pp. 278–292 (1996)
Maler, O., Manna, Z., Pnueli, A.: From timed to hybrid systems. In: de Bakker, J.W., Huizing, C., de Roever, W.P., Rozenberg, G. (eds.) REX 1991. LNCS, vol. 600, pp. 447–484. Springer, Heidelberg (1992)
Alur, R., Henzinger, T.A.: Modularity for timed and hybrid systems. In: Mazurkiewicz, A., Winkowski, J. (eds.) CONCUR 1997. LNCS, vol. 1243, pp. 74–88. Springer, Heidelberg (1997)
Lynch, N., Segala, R., Vaandrager, F.: Hybrid i/o automata. Inf. Comput. 185, 105–157 (2003)
Barringer, H., Kuiper, R., Pnueli, A.: A really abstract concurrent model and its temporal logic. In: POPL, pp. 173–183. ACM Press (1986)
Rabinovich, A.: On the decidability of continuous time specification formalisms. J. Logic Comput. 8, 669–678 (1998)
Chaochen, Z., Hansen, M.R., Sestoft, P.: Decidability and undecidability results for duration calculus. In: Enjalbert, P., Wagner, K.W., Finkel, A. (eds.) STACS 1993. LNCS, vol. 665, pp. 58–68. Springer, Heidelberg (1993)
Li, X.: Decidability of mean value calculus. J. Comp. Sci. Tech. 14, 173–180 (1999)
Platzer, A.: Logical Analysis of Hybrid Systems: Proving Theorems for Complex Dynamics. Springer, Heidelberg (2010)
Platzer, A.: Differential-algebraic dynamic logic for differential-algebraic programs. J. Log. Comput. 20, 309–352 (2010)
Platzer, A.: Differential dynamic logic for hybrid systems. J. Autom. Reas. 41, 143–189 (2008)
Rabinovich, A.: On translations of temporal logic of actions into monadic second order logic. Theoret. Comput. Sci. 193, 197–214 (1998)
Bellini, P., Mattolini, R., Nesi, P.: Temporal logics for real-time system specification. ACM Comput. Surv. 32, 12–42 (2000)
Hirshfeld, Y., Rabinovich, A.: Logics for real time: decidability and complexity. Fundam. Inf. 62, 1–28 (2004)
Zhang, J., Johansson, K.H., Lygeros, J., Sastry, S.: Zeno hybrid systems. Int. J. Robust Nonlinear Control 11, 435–451 (2001)
Birkhoff, G.D.: Dynamical Systems. American Mathematical Society, New York (1927)
Nemytskii, V., Stepanov, V.: Qualitative Theory of Differential Equations. GITTL (in Russian), Moscow (1949)
Gottschalk, W.H., Hedlund, G.A.: Topological Dynamics. American Mathematical Society Colloquium Publications, New York (1955)
Roxin, E.: Local definition of generalized control systems. Mich. Math. J. 13, 91–96 (1966)
Hájek, O.: Theory of processes, I. Czech. Math. J. 17, 159–199 (1967)
Sell, G.R.: Differential equations without uniqueness and classical topological dynamics. J. Differ. Equ. 14, 42–56 (1973)
Kloeden, P.E.: General control systems. In: Coppel, W.A. (ed.) Mathematical Control Theory. Lecture Notes in Mathematics, vol. 680, pp. 119–137. Springer, Heidelberg (1978)
Kalman, R.E., Falb, P.L., Arbib, M.A.: Topics in Mathematical System Theory. Pure & Applied Mathematics S. McGraw-Hill Education, New York (1969)
Mesarovic, M.D., Takahara, Y.: Abstract Systems Theory. Lecture Notes in Control and Information Sciences. Springer, Heidelberg (1989)
Matrosov, V.M., Anapolskiy, L., Vasilyev, S.: The Method of Comparison in Mathematical Systems Theory. Nauka (in Russian), Novosibirsk (1980)
Willems, J.C.: Paradigms and puzzles in the theory of dynamical systems. IEEE Trans. Autom. Control 36, 259–294 (1991)
Bushaw, D.: Dynamical polysystems and optimisation. J. Differ. Equ. 2, 351–356 (1963)
Movchan, A.: Stability of processes in two metrics. Applied Math. Mech. (in Russian) 24, 988–1001 (1960)
Hájek, O.: Theory of processes, II. Czech. Math. J. 17, 372–398 (1967)
Ivanov, I.: A criterion for existence of global-in-time trajectories of non-deterministic Markovian systems. In: Ermolayev, V., Mayr, H.C., Nikitchenko, M., Spivakovsky, A., Zholtkevych, G. (eds.) ICTERI 2012. CCIS, vol. 347, pp. 111–130. Springer, Heidelberg (2013)
Ivanov, I.: On existence of total input-output pairs of abstract time systems. In: Ermolayev, V., Mayr, H.C., Nikitchenko, M., Spivakovsky, A., Zholtkevych, G. (eds.) ICTERI 2013. CCIS, vol. 412, pp. 308–331. Springer, Heidelberg (2013)
Ivanov, I.: An abstract block formalism for engineering systems. In: Ermolayev, V., Mayr, H.C., Nikitchenko, M., Spivakovsky, A., Zholtkevych, G., Zavileysky, M., Kravtsov, H., Kobets, V., Peschanenko, V.S. (eds.) ICTERI. CEUR Workshop Proceedings, vol. 1000, pp. 448–463. CEUR-WS.org (2013)
Rabin, M.: Decidability of second-order theories and automata on infinite trees. Trans. AMS 141, 1–35 (1969)
Abraham, U., Ivanov, I., Nikitchenko, M.: Proving behavioral properties of distributed algorithms using their compositional semantics. In: Proceedings of the First International Seminar Specification and Verification of Hybrid Systems, 10–12 October 2011, Taras Shevchenko National University of Kyiv, pp. 9–19 (2011)
Luke, J. (originator): Sorgenfrey topology. Encyclopedia of Mathematics. http://www.encyclopediaofmath.org/index.php?title=Sorgenfrey_topology
Acknowledgments
We would like to thank Dr. Martin Strecker and Prof. Louis Féraud of Institut de Recherche en Informatique de Toulouse (IRIT), France for the ideas which inspired this work.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Ivanov, I., Nikitchenko, M., Abraham, U. (2014). On a Decidable Formal Theory for Abstract Continuous-Time Dynamical Systems. In: Ermolayev, V., Mayr, H., Nikitchenko, M., Spivakovsky, A., Zholtkevych, G. (eds) Information and Communication Technologies in Education, Research, and Industrial Applications. ICTERI 2014. Communications in Computer and Information Science, vol 469. Springer, Cham. https://doi.org/10.1007/978-3-319-13206-8_4
Download citation
DOI: https://doi.org/10.1007/978-3-319-13206-8_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-13205-1
Online ISBN: 978-3-319-13206-8
eBook Packages: Computer ScienceComputer Science (R0)