Nothing Special   »   [go: up one dir, main page]

Skip to main content

General control systems

  • Conference paper
  • First Online:
Mathematical Control Theory

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 680))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 46.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Richard F. Arens, "A topology for spaces of transformations", Ann. of Math. (2) 47 (1946), 480–495.

    Article  MathSciNet  MATH  Google Scholar 

  2. Е.А. Барбашин [E.A. Barbašin], "On the theory of general dynamical systems", Učen. Zap. Moskov. Gos. Univ. 135, Mat. II (1948), 110–133 (Russian).

    MathSciNet  Google Scholar 

  3. Е.А. Барбашин [E.A. Barbašin], "Dispersive dynamical systems", Uspehi Mat. Nauk (N.S.) 5 No. 4 (38) (1950), 138–139 (Russian).

    MathSciNet  Google Scholar 

  4. D.P. Bertsekas and I.B. Rhodes, "On the minimax reachability of target sets and target tubes", Automatica 7 (1971), 233–247.

    Article  MathSciNet  MATH  Google Scholar 

  5. N.P. Bhatia, O. Hajek, Local Semi-Dynamical Systems (Lecture Notes in Mathematics, 90. Springer-Verlag, Berlin, Heidelberg, New York, 1969).

    Book  MATH  Google Scholar 

  6. N.P. Bhatia, G.P. Szegö, Dynamical Systems: Stability Theory and Applications (Lecture Notes in Mathematics, 35. Springer-Verlag, Berlin, Heidelberg, New York, 1967).

    Book  MATH  Google Scholar 

  7. F.S. de Blasi and J. Schinas, "Stability of multivalued discrete dynamical systems", J. Differential Equations 14 (1973), 245–262.

    Article  MathSciNet  MATH  Google Scholar 

  8. T.F. Bridgland Jr., "Contributions to the theory of generalized differential equations. I", Math. Systems Theory 3 (1969), 17–50.

    Article  MathSciNet  MATH  Google Scholar 

  9. T.F. Bridgland Jr., "Contributions to the theory of generalized differential equations. II", Math. Systems Theory 3 (1969), 156–165.

    Article  MathSciNet  MATH  Google Scholar 

  10. И,У. Бронштейн [I.U. Broňstein], "О динамичесних системах беэ единстбенносте нан полугруппах неодноэначных отобрузений топологичесного пространстба" [On dynamical systems without uniqueness, as semigroups of non-singlevalued mappings of a topological space], Dokl. Akad. Nauk SSSR 144 (1962), 954–957; Soviet Math. Dokl. 3 (1962), 824–827.

    MathSciNet  Google Scholar 

  11. И.У. Бронштейн, Б.А. Шербанов [I.U. Bronštein, B.A. Ščerbakov], "Неноторые свойства устойчивыч по лаграншу воронон обобщнныч динамичесних систеМ" [Certain properties of Lagrange stable funnels of generalized dynamical systems], Izv. Akad. Nauk Moldav. SSSR 5 (1962), 99–102.

    Google Scholar 

  12. Б.М. Будан [B.M. Budak], "Dispersive dynamical systems", Vestnik Moskov. Univ. (1947), No. 8, 135–137 (Russian).

    Google Scholar 

  13. Б.М. Будан [B.M. Budak], "The concept of motion in a generalized dynamical system", Moskov. Gos. Univ. Uč. Zap. 155, Mat. 5 (1952), 174–194 (Russian).

    MathSciNet  Google Scholar 

  14. D. Bushaw, "Dynamical polysystems and optimization", Contributions to Differential Equations 2 (1963), 351–365.

    MathSciNet  MATH  Google Scholar 

  15. D. Bushaw, "Dynamical polysystems: a survey", Proc. US-Japan Seminar on Differential and Functional Equations, 13–26 (Minneapolis, Minnesota, 1967. Benjamin, New York, 1967).

    MATH  Google Scholar 

  16. M. Fukuhara, "Sur les familles de fonctions à une variable réelle", J. Fac. Sci. Hokkaido Univ. (I) 1 (1932), 163–209.

    MATH  Google Scholar 

  17. Walter Helbig Gottschalk and Gustav Arnold Hedlund, Topological Dynamics (Amer. Math. Soc. Colloquium Publications, 36. Amer. Math. Soc., Providence, Rhode Island, 1955).

    MATH  Google Scholar 

  18. Hubert Halkin, "Topological aspects of optimal control of dynamical polysystems", Contributions to Differential Equations 3 (1964), 377–385.

    MathSciNet  MATH  Google Scholar 

  19. М.С. Иэман [M.S. Izman], "Устойчияость и множества притяжения в лисшешсных динамичесних системах" [Stability and sets of attraction in dispersive dynamical systems], Mat. Issled. 3 (1968), Vyp 3 (9), 60–78.

    MathSciNet  Google Scholar 

  20. М.С. Иэман [M.S. Izman], "Устойчивость множеств и аттранторы в дисшерсных динамичесних системах" [Stability of sets, and attractors in dispersive dynamical systems], Mat. Issled. 3 (1968), Vyp 4 (10), 51–77.

    MathSciNet  Google Scholar 

  21. М.С. Иэман [M.S. Izman], "Применение второчо метода ляшунова для исследования устойчивости и асимптотичесной устойчивости миошуств в дисперсиых динамичесних системах" [An application of Ljapunov's second method for the investigation of stability and asymptotic stability of sets in dispersive dynamical systems], Differencial'nye Uravnenija 5 (1969), 1207–1217; Differential Equations 5 (1969), 883–891 (1972).

    Google Scholar 

  22. М.С. Иэман [H.S. Izman], Об асимптотичесной устойчивости множеств в дисперсных динамичесних системах" [On the asymptotic stability of sets in dispersive dynamical systems], Differencial'nye Uravnenija 1 (1971), 615–621.

    Google Scholar 

  23. John L. Kelley, General Topology (The University Series in Higher Mathematics. Van Nostrand, Toronto, New York, London, 1955).

    MATH  Google Scholar 

  24. Peter Eris Kloeden, "On general semi dynamical systems" (PhD thesis, University of Queensland, Brisbane, 1974); see also: Abstract, Bull. Austral. Math. Soc. 13 (1975), 152–154.

    Google Scholar 

  25. Peter Kloeden, "General control systems without backward extension", Differential Games and Control Theory, 49–58 (Lecture Notes in Pure and Applied Mathematics, 10. Marcel Dekker, New York, 1974).

    Google Scholar 

  26. P.E. Kloeden, "Generalised Markovian control systems", J. Austral. Math. Soc. 18 (1974), 485–491.

    Article  MathSciNet  MATH  Google Scholar 

  27. P.E. Kloeden, "Asymptotic invariance and limit sets of general control systems", J. Differential Equations 19 (1975), 91–105.

    Article  MathSciNet  MATH  Google Scholar 

  28. P.E. Kloeden, "Eventual stability in general control systems", J. Differential Equations 19 (1975), 106–124.

    Article  MathSciNet  MATH  Google Scholar 

  29. Peter E. Kloeden, "Some remarks on relative stability", J. Austral. Math. Soc. Ser. B 19 (1975), 112–115.

    Article  MathSciNet  MATH  Google Scholar 

  30. Peter E. Kloeden, "An attainability set model for dynamical games", J. Differential Equations 21 (1976), 197–230.

    Article  MathSciNet  Google Scholar 

  31. P.E. Kloeden, "Topologies for general semi-dynamical systems", J. Differential Equations (to appear).

    Google Scholar 

  32. H. Kneser, "Über die Lösungen eines Systems gewöhnlicher Differentialgleichungen, das der Lipschitzschen Bedingung nicht genügt", S.-B. K. Preuss. Akad. Wiss. Berlin, Phys.-Math. Kl. 1923, 171–174.

    Google Scholar 

  33. G.S. Ladde and S.G. Deo, "General dynamical systems and functional differential equations", J. Mathematical and Physical Sci. 3 (1969), 257–268.

    MathSciNet  MATH  Google Scholar 

  34. О.А. Малафеев [O.A. Malafeev], "О динамичесних ичрах с эависимыми двишениями" [On dynamic games with dependent motions], Dokl. Akad. Nauk SSSR 213 (1973), 783–786; Soviet Math. Dokl. 14 (1973), 1792–1796 (1974).

    MathSciNet  Google Scholar 

  35. О.А. Малафеев [O.A. Malafeev], "Ситуацни равновесия в динамичесних ипрах" [Equilibrium situations in dynamic games], Kibernetika 1974, No. 3 (1974), 111–118.

    Google Scholar 

  36. L. Markus and E.B. Lee, Foundations of Optimal Control Theory (John Wiley & Sons, New York, London, Sydney, 1967).

    MATH  Google Scholar 

  37. М.И. Микневич [M.I. Minkevič], "Теория интепральных воронок в обобщнных динамических системах беэ предположения единственности" [The theory of integral funnels in generalized dynamical systems without a hypothesis of uniqueness], Dokl. Akad. Nauk SSSR (N.S.) 59 (1948), 1049–1052.

    Google Scholar 

  38. М.И. Минкевич [M.I. Minkevič], "Theory of integral funnels in dynamical systems without uniqueness", Uče. Zap. Moskov. Gos. Univ. 135 Mat. II (1948), 134–151 (Russian).

    MathSciNet  Google Scholar 

  39. М.И. Минкевич [M.I. Minkevič], "Closed integral funnels in generalized dynamical systems without a hypothesis of uniqueness", Uče. Zap. Moskov. Gos. Univ. 163 Mat. VI (1952), 73–88 (Russian).

    Google Scholar 

  40. Jozef Nagy, "Stability of sets with respect to abstract processes", Mathematical Systems Theory and Economics, 11 (Proc. Internat. Summer School, Varenna, 1967, 355–378. Lacture Notes in Operations Research and Mathematical Economics, 12. Springer-Verlag, Berlin, Heidelberg, New York, 1969).

    Google Scholar 

  41. В.В. Немыцкий, В.В. Степанов [V.V. Nemytskii and V.V. Stepanov], Качесмбеннaя Теорuя Дцфферuнцuaлбных Урaвненuŭ [Qualitive Theory of Differential Equations] (OG12, Moscow, 1949. Transl. Princeton Mathematical Series, 22. Princeton University Press, Princeton, New Jersey, 1960).

    Google Scholar 

  42. B.G. Pachpatte, "Strict stability in general dynamical systems", J. Differential Equations 11 (1972), 464–473.

    Article  MathSciNet  MATH  Google Scholar 

  43. T. Parthasarathy, Selection Theorems and Their Applications (Lecture Notes in Mathematics, 263. Springer-Verlag, Berlin, Heidelberg, New York, 1972).

    Book  MATH  Google Scholar 

  44. В.И. Пономарев [V.I. Ponomarev], "Новое пространство эамкнутых множеств и многоэначные нвпрерывные отображения бикомпактов" [A new space of closed sets and multivalued continuous mappings of bicompacta], Mat. Sb. (N.S.) 48 (90) (1959), 191–212; Amer. Math. Soc. Transl. (2) 38 (1964), 95–118.

    MathSciNet  Google Scholar 

  45. E.O. Roxin, "Axiomatic foundation of the theory of control systems", Proc. Second Internat. Conf. IFAC, Basel 1963, 640–644 (Butterworths, London, 1964).

    Google Scholar 

  46. E.O. Roxin, "Dynamical systems with inputs", Proc. Symposium on System Theory, New York 1965, 105–111 (Microwave Research Institute Symposia Series, 15. Polytechnic Press, Polytechnic Institute of Brooklyn, Brooklyn, New York (distributed by Interscience [John Wiley & Sons], New York, London), 1965).

    Google Scholar 

  47. Emilio Roxin, "Stability in general control systems", J. Differential Equations 1 (1965), 115–150.

    Article  MathSciNet  MATH  Google Scholar 

  48. Emilio Roxin, "On generalized dynamical systems defined by contingent equations", J. Differential Equations 1 (1965), 188–205.

    Article  MathSciNet  MATH  Google Scholar 

  49. Emilio Roxin, "On stability in control systems", SIAM J. Control 3 (1965), 357–372 (1966).

    MathSciNet  MATH  Google Scholar 

  50. Emilio Roxin, "Local definition of generalized control systems", Michigan Math. J. 13 (1966), 91–96.

    Article  MathSciNet  MATH  Google Scholar 

  51. Emilio Roxin, "On asymptotic stability in control systems", Rend. Circ. Mat. Palmero (2) 15 (1966), 193–208.

    Article  MathSciNet  MATH  Google Scholar 

  52. Emilio Roxin, "On finite stability in control systems", Rend. Circ. Mat. Palmero (2) 15 (1966), 273–282.

    Article  MathSciNet  MATH  Google Scholar 

  53. Emilio Roxin, "Axiomatic approach in differential games", J. Optimization Theory Appl. 3 (1969), 153–163.

    Article  MathSciNet  MATH  Google Scholar 

  54. Emilio O. Roxin, "Some global problems in differential games", Global Differential Dynamics, 103–116 (Lecture Notes in Mathematics, 235. Springer-Verlag, Berlin, Heidelberg, New York, 1971).

    Chapter  Google Scholar 

  55. C. Ryll-Nardzewski, "A theory of pursuit and evasion", Advances in Game Theory (Annals of Mathematics Studies, 52, 113–126. Princeton University Press, Princeton, New Jersey, 1964).

    Google Scholar 

  56. S.H. Saperstone, "On the attainable set of conditional probability measures in stochastic control problems", Internat. J. Systems Sci. 7 (1976), 131–135.

    Article  MathSciNet  MATH  Google Scholar 

  57. Peter Seibert, "Stability under perturbations in generalized dynamical systems", Internat. Sympos. Nonlinear Differential Equations and Nonlinear Mechanics, 463–473 (Academic Press, New York, 1963).

    Chapter  Google Scholar 

  58. George R. Sell, "On the fundamental theory of ordinary differential equations", J. Differential Equations 1 (1965), 370–392.

    Article  MathSciNet  MATH  Google Scholar 

  59. К.С. Сибирский [K.S. Sibirskii], Вве¶rt;енuе в Тоnолоческую Дuнaмuку (Redakcionno-Izdat. Otdel Akad. Nauk Moldav. SSR, Kishinev, 1970). English Transl: Introduction to Topological Dynamics (translated by Leo F. Boron. Noordhoff, Leyden, 1975).

    Google Scholar 

  60. К.С. Сибирский, Н.К. Чебан [K.S. Sibirskii and N.K. Čeban], "Классификация устойчивых по пуассону точек в диоперсных динамических системах" [Classification of Poisson stable points in dispersive dynamical systems], Dokl. Akad. Nauk SSSR 209 (1973), 801–804.

    MathSciNet  Google Scholar 

  61. К.С. qSибирский, И.А. Чиркова [K.S. Sibirskii and I.A. Čirkova], "Discontinuous dispersive dynamical systems", Mat. Issled. 6 (1971), Uyp. 4 (22), 165–175 (Russian).

    MathSciNet  Google Scholar 

  62. К.С. Сибирский, И.А. Чиркова [K.S. Sibirskii and I.A. Čirkova], "К теории разрывных дисперсных динамических систем" [On the theory of discontinuous dispersive dynamical systems]", Dokl. Akad. Nauk SSSR 211 (1973), 1302–1305; Soviet Math. Dokl. 14 (1973), 1256–1261 (1974).

    MathSciNet  Google Scholar 

  63. J.M. Skowronski, "Qualitative hazard avoiding Lyapunov games", Preprint, 42. University of Queensland, Brisbane, 1973.

    Google Scholar 

  64. R.J. Stonier, "Ultimate boundedness of a two-person game using Lyapunov theory", Preprint, 41. University of Queensland, Brisbane, 1973.

    Google Scholar 

  65. G.P. Szegö and G. Treccani, "Flow without uniqueness near a compact strongly invariant set", Boll. Un. Mat. Ital. (4) 2 (1969), 113–124.

    MathSciNet  MATH  Google Scholar 

  66. G.P. Szegö, G. Treccani, Semigruppi di Trasformazioni Multivoche (Lecture Notes in Mathematics, 101. Springer-Verlag, Berlin, Heidelberg, New York, 1969).

    MATH  Google Scholar 

  67. G.P. Szegö and G. Treccani, "An abstract formulation of minimization algorithms", Differential Games and Related Topics, 279–297 (North-Holland, Amsterdam, London, 1971).

    Google Scholar 

  68. P.P. Varaiya, "On the existence of solutions to a differential game", SIAM J. Control 9 (1967), 153–162.

    Article  MathSciNet  MATH  Google Scholar 

  69. Taro Yoshizawa, Stability Theory by Liapunov's Second Method (Publications of the Mathematical Society of Japan, 9. The Mathematical Society of Japan, Tokyo, 1966).

    MATH  Google Scholar 

  70. S.K. Zaremba, "Sur certaines familles de courbes en relation avec la théorie des équations différentielles", Ann. Soc. Polon. Math. 15 (1937), 83–100.

    MATH  Google Scholar 

  71. В.И. Зубов [V.I. Zubov], Мемо¶rt;ы А.М. Ляnуновa u uх Прuмененuе (Izdat. Leningrad Univ., Moscow, 1957). English Transl: Methods of A.M. Lyapunov and Their Application (Translated by Leo F. Boron. Noordhoff, Groningen, 1964).

    Google Scholar 

Download references

Authors

Editor information

W. A. Coppel

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Springer-Verlag

About this paper

Cite this paper

Kloeden, P.E. (1978). General control systems. In: Coppel, W.A. (eds) Mathematical Control Theory. Lecture Notes in Mathematics, vol 680. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0065314

Download citation

  • DOI: https://doi.org/10.1007/BFb0065314

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-08941-4

  • Online ISBN: 978-3-540-35714-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics