Abstract
This paper describes a probabilistic generative model and its associated algorithm to jointly register multiple point sets. The vast majority of state-of-the-art registration techniques select one of the sets as the “model” and perform pairwise alignments between the other sets and this set. The main drawback of this mode of operation is that there is no guarantee that the model-set is free of noise and outliers, which contaminates the estimation of the registration parameters. Unlike previous work, the proposed method treats all the point sets on an equal footing: they are realizations of a Gaussian mixture (GMM) and the registration is cast into a clustering problem. We formally derive an EM algorithm that estimates both the GMM parameters and the rotations and translations that map each individual set onto the “central” model. The mixture means play the role of the registered set of points while the variances provide rich information about the quality of the registration. We thoroughly validate the proposed method with challenging datasets, we compare it with several state-of-the-art methods, and we show its potential for fusing real depth data.
This work has received funding from Agence Nationale de la Recherche under the MIXCAM project number ANR-13-BS02-0010-01.
Chapter PDF
Similar content being viewed by others
References
Banfield, J.D., Raftery, A.E.: Model-based Gaussian and non-Gaussian clustering. Biometrics 49(3), 803–821 (1993)
Bartoli, A., Pizzaro, D., Loog, M.: Stratified generalized procrustes analysis. IJCV 101(2), 227–253 (2013)
Bergevin, R., Soucy, M., Gagnon, H., Laurendeau, D.: Towards a general multi-view registration technique. IEEE-TPAMI 18(5), 540–547 (1996)
Besl, P.J., McKay, N.D.: A method for registration of 3-D shapes. IEEE TPAMI 14, 239–256 (1992)
Bishop, C.M.: Pattern Recognition and Machine Learning. Springer (2006)
Blais, G., D. Levine, M.: Registering multiview range data to create 3d computer objects. IEEE-TPAMI 17(8), 820–824 (1995)
Castellani, U., Fusiello, A., Murino, V.: Registration of multiple acoustic range views for underwater scene reconstruction. CVIU 87(1-3), 78–89 (2002)
Chen, Y., Medioni, G.: Object modelling by registration of multiple range images. IVC 10(3), 145–155 (1992)
Chui, H., Rangarajan, A.: A new point matching algorithm for non-rigid registration. CVIU 89(2-3), 114–141 (2003)
Fitzgibbon, A.W.: Robust registration of 2D and 3D point sets. IVC 21(12), 1145–1153 (2001)
Granger, S., Pennec, X.: Multi-scale EM-ICP: A fast and robust approach for surface registration. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002, Part IV. LNCS, vol. 2353, pp. 418–432. Springer, Heidelberg (2002)
Hansard, M., Horaud, R., Amat, M., Evangelidis, G.: Automatic detection of calibration grids in time-of-flight images. CVIU 121, 108–118 (2014)
Hansard, M., Horaud, R., Amat, M., Lee, S.: Projective alignment of range and parallax data. In: CVPR (2011)
Hermans, J., Smeets, D., Vandermeulen, D., Suetens, P.: Robust point set registration using em-icp with information-theoretically optimal outlier handling. In: CVPR (2011)
Horaud, R., Forbes, F., Yguel, M., Dewaele, G., ZhangI, J.: Rigid and articulated point registration with expectation conditional maximization. IEEE-TPAMI 33(3), 587–602 (2011)
Huber, D.F., Hebert, M.: Fully automatic registration of multiple 3d data sets. IVC 21(7), 637–650 (2003)
Izadi, S., Kim, D., Hilliges, O., Molyneaux, D., Newcombe, R., Kohli, P., Shotton, J., Hodges, S., Freeman, D., Davison, A., Fitzgibbon, A.: Kinectfusion: Real-time 3d reconstruction and interaction using a moving depth camera. In: ACM Symposium on UIST (2011)
Jian, B., Vemuri, B.C.: Robust point set registration using gaussian mixture models. IEEE-TPAMI 33(8), 1633–1645 (2011)
Krishnan, S., Lee, P.Y., Moore, J.B.: Optimisation-on-a-manifold for global registration of multiple 3d point sets. Int. J. Intelligent Systems Technologies and Applications 3(3/4), 319–340 (2007)
Masuda, T., Yokoya, N.: A robust method for registration and segmentation of multiple range images. CVIU 61(3), 295–307 (1995)
Mateo, X., Orriols, X., Binefa, X.: Bayesian perspective for the registration of multiple 3d views. CVIU 118, 84–96 (2014)
Meng, X.L., Rubin, D.B.: Maximum likelihood estimation via the ECM algorithm: a general framework. Biometrika 80, 267–278 (1993)
Myronenko, A., Song, X.: Point-set registration: Coherent point drift. IEEE-TPAMI 32(12), 2262–2275 (2010)
Newcombe, R.A., Izadi, S., Hilliges, O., Molyneaux, D., Kim, D., Davison, A.J., Kohli, P., Shotton, J., Hodges, S., Fitzgibbon, A.: Kinectfusion: Real-time dense surface mapping and tracking. In: IEEE ISMAR (2011)
Torsello, A., E.: Multiview registration via graph diffusion of dual quaternions. In: CVPR (2011)
Tsin, Y., Kanade, T.: A correlation-based approach to robust point set registration. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004, Part III. LNCS, vol. 3023, pp. 558–569. Springer, Heidelberg (2004)
Umeyama, S.: Least-squares estimation of transformation parameters between two point patterns. IEEE-TPAMI 13(4), 376–380 (1991)
Wang, F., Vemuri, B.C., Rangarajan, A., Eisenschenk, S.J.: Simultaneous nonrigid registration of multiple point sets and atlas construction. IEEE-TPAMI 30(11), 2011–2022 (2008)
Wells III, W.M.: Statistical approaches to feature-based object recognition. IJCV 28(1/2), 63–98 (1997)
Williams, J., Bennamoun, M.: Simultaneous registration of multiple corresponding point sets. CVIU 81(1), 117–142 (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Evangelidis, G.D., Kounades-Bastian, D., Horaud, R., Psarakis, E.Z. (2014). A Generative Model for the Joint Registration of Multiple Point Sets. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds) Computer Vision – ECCV 2014. ECCV 2014. Lecture Notes in Computer Science, vol 8695. Springer, Cham. https://doi.org/10.1007/978-3-319-10584-0_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-10584-0_8
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-10583-3
Online ISBN: 978-3-319-10584-0
eBook Packages: Computer ScienceComputer Science (R0)