Nothing Special   »   [go: up one dir, main page]

Skip to main content

Abstract

We present a new method for part-based segmentation of voxel shapes that uses medial surfaces to define a segmenting cut at each medial voxel. The cut has several desirable properties – smoothness, tightness, and orientation with respect to the shape’s local symmetry axis, making it a good segmentation tool. We next analyze the space of all cuts created for a given shape and detect cuts which are good segment borders. Our method is robust to noise, pose invariant, independent on the shape geometry and genus, and is simple to implement. We demonstrate our method on a wide selection of 3D shapes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agates, A., Pratikakis, I., Perantonis, S., Sapidis, N., Azariadis, P.: 3D mesh segmentation methodologies for CAD applications. Computer-Aided Design & Applications 4(6), 827–841 (2007)

    Article  Google Scholar 

  2. Arcelli, C., Sanniti di Baja, G., Serino, L.: Distance-driven skeletonization in voxel images. IEEE TPAMI 33(4), 709–720 (2011)

    Article  Google Scholar 

  3. Attene, M., Falcidieno, B., Spagnuolo, M.: Hierarchical mesh segmentation based on fitting primitives. Visual Comput. 22(3), 181–193 (2006)

    Article  Google Scholar 

  4. Attene, M., Katz, S., Mortara, M., Patane, G., Spagnuolo, M., Tal, A.: Mesh segmentation - a comparative study. In: Proc. SMI, pp. 134–141 (2006)

    Google Scholar 

  5. Au, O., Tai, C., Chu, H., Cohen-Or, D., Lee, T.: Skeleton extraction by mesh contraction. ACM TOG (Proc. ACM SIGGRAPH) 27(3), 441–449 (2008)

    Google Scholar 

  6. Chang, M., Leymarie, F., Kimia, B.: Surface reconstruction from point clouds by transforming the medial scaffold. CVIU 113(11), 1130–1146 (2009)

    Google Scholar 

  7. Comaniciu, D., Meer, P.: Mean shift: A robust approach toward feature space analysis. IEEE TPAMI 24(5), 603–619 (2002)

    Article  Google Scholar 

  8. Dey, T., Sun, J.: Defining and computing curve-skeletons with the medial geodesic function. In: Proc. SGP, pp. 143–152 (2006)

    Google Scholar 

  9. Giblin, P., Kimia, B.: A formal classification of 3D medial axis points and their local geometry. IEEE TPAMI 26(2), 238–251 (2004)

    Article  Google Scholar 

  10. Golovinskiy, A., Funkhouser, T.: Randomized cuts for 3D mesh analysis. ACM TOG 27(5), 454–463 (2008)

    Article  Google Scholar 

  11. Jalba, A., Kustra, J., Telea, A.: Surface and curve skeletonization of large 3D models on the GPU. IEEE TPAMI 35(6), 1495–1508 (2013)

    Article  Google Scholar 

  12. Katz, S., Leifman, G., Tal, A.: Mesh segmentation using feature point and core extraction. Visual Comput. 21(8), 649–658 (2005)

    Article  Google Scholar 

  13. Kiryati, N., Szekely, G.: Estimating shortest paths and minimal distances on digitized three-dimensional surfaces. Pattern Recognition 26, 1623–1637 (1993)

    Article  Google Scholar 

  14. Lee, Y., Lee, S., Shamir, A., Cohen-Or, D., Seidel, H.P.: Mesh scissoring with minima rule and part salience. CAGD 22, 444–465 (2005)

    MATH  Google Scholar 

  15. Li, X., Woon, T., Tan, T., Huang, Z.: Decomposing polygon meshes for interactive applications. In: Proc. I3D, pp. 35–42 (2001)

    Google Scholar 

  16. Lien, J., Keyser, J., Amato, N.: Simultaneous shape decomposition and skeletonization. In: Proc. ACM SPM, pp. 219–228 (2005)

    Google Scholar 

  17. Liu, R., Zhang, H.: Segmentation of 3D meshes through spectral clustering. In: Proc. Pacific Graphics, pp. 298–305 (2004)

    Google Scholar 

  18. Liu, Z., Tang, S., Bu, S., Zhang, H.: New evaluation metrics for mesh segmentation. Computers & Graphics 37(6), 553–564 (2013)

    Article  Google Scholar 

  19. Mount, D., Arya, S.: Approximate nearest-neighbor search (2015), http://www.cs.umd.edu/~mount/ANN

  20. Nooruddin, F., Turk, G.: Simplification and repair of polygonal models using volumetric techniques. IEEE TVCG 9(2) (2003)

    Google Scholar 

  21. Reniers, D., Telea, A.: Tolerance-based feature transforms. In: Braz, J., Ranchordas, A., Araújo, H., Jorge, J. (eds.) VISAPP and GRAPP 2007. CCIS, vol. 4, pp. 187–200. Springer, Heidelberg (2007)

    Google Scholar 

  22. Reniers, D., Telea, A.: Hierarchical part-type segmentation using voxel-based curve skeletons. Visual Comput. 24(6), 383–395 (2008)

    Article  Google Scholar 

  23. Reniers, D., Telea, A.: Part-type segmentation of articulated voxel-shapes using the junction rule. CGF 27(7), 1845–1852 (2008)

    Google Scholar 

  24. Reniers, D., Telea, A.: Patch-type segmentation of voxel shapes using simplified surface skeletons. CGF 27(7), 1837–1844 (2008)

    Google Scholar 

  25. Reniers, D., van Wijk, J.J., Telea, A.: Computing multiscale skeletons of genus 0 objects using a global importance measure. IEEE TVCG 14(2), 355–368 (2008)

    Google Scholar 

  26. Roerdink, J., Hesselink, W.: Euclidean skeletons of digital image and volume data in linear time by the integer medial axis transform. IEEE TPAMI 30(12), 2204–2217 (2008)

    Article  Google Scholar 

  27. Shamir, A.: A formulation of boundary mesh segmentation. In: Proc. 3DPVT (2004)

    Google Scholar 

  28. Shamir, A.: A survey on mesh segmentation techniques. CGF 27(8), 1539–1556 (2008)

    MATH  Google Scholar 

  29. Shapira, L., Shamir, A., Cohen-Or, D.: Consistent mesh partitioning and skeletonisation using the shape diameter function. Visual Comput. 24(4), 249–259 (2008)

    Article  Google Scholar 

  30. Siddiqi, K., Bouix, S., Tannenbaum, A., Zucker, S.: Hamilton-Jacobi skeletons. IJCV 48(3), 215–231 (2002)

    Article  MATH  Google Scholar 

  31. Siddiqi, K., Pizer, S.: Medial representations: mathematics, algorithms and applications. Springer (2008)

    Google Scholar 

  32. Siddiqi, K., Zhang, J., Macrini, D., Shoukofandeh, A., Dickinson, S.: Retrieving articulated 3D models using medial surfaces. Mach. Vis. Appl. 19, 261–275 (2008)

    Article  Google Scholar 

  33. Tierny, J., Vandeborre, J., Daoudi, M.: Topology driven 3D mesh hierarchical segmentation. In: Proc. SMI, pp. 215–220 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cong Feng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Feng, C., Jalba, A.C., Telea, A.C. (2015). Part-Based Segmentation by Skeleton Cut Space Analysis. In: Benediktsson, J., Chanussot, J., Najman, L., Talbot, H. (eds) Mathematical Morphology and Its Applications to Signal and Image Processing. ISMM 2015. Lecture Notes in Computer Science(), vol 9082. Springer, Cham. https://doi.org/10.1007/978-3-319-18720-4_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18720-4_51

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18719-8

  • Online ISBN: 978-3-319-18720-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics