Abstract
This paper proposes a novel segmentation method combining shape knowledge obtained from a constrained Statistical Model (SM) into the well known Markov Random Field (MRF) segmentation framework. The employed SM based on Probabilistic Principal Component Analysis (PPCA) allows to compute local information about the remaining variance i.e. uncertainty about the correct segmentation boundary. This knowledge about the local segmentation uncertainty is then used to construct a prior with a non-linear shape update mechanism, where a high cost is incurred in locations with little uncertainty and a low cost for shifting the segmentation boundary in locations with high uncertainty.
Experimental results for segmenting the masseter muscle from CT data are presented showing the advantage of including the knowledge about local segmentation uncertainties into the segmentation framework.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ali, A.M., Farag, A.A., El-Baz, A.S.: Graph Cuts Framework for Kidney Segmentation with Prior Shape Constraints. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part I. LNCS, vol. 4791, pp. 384–392. Springer, Heidelberg (2007)
Boykov, Y., Jolly, M.P.: Interactive Graph Cuts for Optimal Boundary and Region Segmentation of Objects in N-D Images. In: ICCV, vol. 1, pp. 105–112 (2001)
Boykov, Y., Kolmogorov, V.: An Experimental Comparison of Min-Cut/Max-Flow Algorithms for Energy Minimization in Vision. PAMI 26(9), 1124–1137 (2004)
Cootes, T., Taylor, C., Cooper, D., Graham, J.: Active Shape Models; Their Training and Application. Computer Vision and Image Understanding 61(1), 38–59 (1995)
Das, P., Veksler, O., Zavadsky, V., Boykov, Y.: Semi-Automatic Segmentation with Compact Shape Prior. Image and Vision Computing 27(1), 206–219 (2009)
Dedner, A., Lüthi, M., Albrecht, T., Vetter, T.: Curvature Guided Level Set Registration using Adaptive Finite Elements. In: Pattern Recognition, pp. 527–536 (2007)
El-Zehiry, N., Elmaghraby, A.: Graph Cut Based Deformable Model with Statistical Shape Priors. In: ICPR, pp. 1–4 (2008)
Freedman, D., Zhang, T.: Interactive Graph Cut Based Segmentation with Shape Priors. In: CVPR, pp. 755–762 (2005)
Freiman, M., Kronman, A., Esses, S.J., Joskowicz, L., Sosna, J.: Non-parametric Iterative Model Constraint Graph min-cut for Automatic Kidney Segmentation. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010, Part III. LNCS, vol. 6363, pp. 73–80. Springer, Heidelberg (2010)
Leventon, M.E., Grimson, W.E.L., Faugeras, O.: Statistical Shape Influence in Geodesic Active Contours. In: CVPR, p. 1316 (2000)
Lüthi, M., Albrecht, T., Vetter, T.: Probabilistic Modeling and Visualization of the Flexibility in Morphable Models. In: Mathematics of Surfaces, pp. 251–264 (2009)
Majeed, T., Fundana, K., Lüthi, M., Kiriyanthan, S., Beinemann, J., Cattin, P.C.: Using a Flexibility Constrained 3D Statistical Shape Model for Robust MRF-Based Segmentation. In: MMBIA, pp. 57–64 (2012)
Malcolm, J., Rathi, Y., Tannenbaum, A.: Graph Cut Segmentation with Nonlinear Shape Priors. In: ICIP, vol. 4, pp. 365–368 (2007)
Slabaugh, G.G., Unal, G.: Graph Cuts Segmentation Using an Elliptical Shape Prior. In: ICIP, pp. 1222–1225 (2005)
Veksler, O.: Star Shape Prior for Graph-Cut Image Segmentation. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 454–467. Springer, Heidelberg (2008)
Blanz, V., Vetter, T.: A Morphable Model for the Synthesis of 3D Faces. In: Computer Graphics and Interactive Techniques, pp. 187–194 (1999)
Zhang, S., Zhan, Y., Dewan, M., Huang, J., Metaxas, D.N., Zhou, X.S.: Sparse Shape Composition: A New Framework for Shape Prior Modeling. In: CVPR, pp. 1025–1032 (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Majeed, T., Fundana, K., Kiriyanthan, S., Beinemann, J., Cattin, P. (2013). Graph Cut Segmentation Using a Constrained Statistical Model with Non-linear and Sparse Shape Optimization. In: Menze, B.H., Langs, G., Lu, L., Montillo, A., Tu, Z., Criminisi, A. (eds) Medical Computer Vision. Recognition Techniques and Applications in Medical Imaging. MCV 2012. Lecture Notes in Computer Science, vol 7766. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36620-8_6
Download citation
DOI: https://doi.org/10.1007/978-3-642-36620-8_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-36619-2
Online ISBN: 978-3-642-36620-8
eBook Packages: Computer ScienceComputer Science (R0)