Nothing Special   »   [go: up one dir, main page]

Skip to main content

Graph Cut Segmentation Using a Constrained Statistical Model with Non-linear and Sparse Shape Optimization

  • Conference paper
Medical Computer Vision. Recognition Techniques and Applications in Medical Imaging (MCV 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7766))

Included in the following conference series:

Abstract

This paper proposes a novel segmentation method combining shape knowledge obtained from a constrained Statistical Model (SM) into the well known Markov Random Field (MRF) segmentation framework. The employed SM based on Probabilistic Principal Component Analysis (PPCA) allows to compute local information about the remaining variance i.e. uncertainty about the correct segmentation boundary. This knowledge about the local segmentation uncertainty is then used to construct a prior with a non-linear shape update mechanism, where a high cost is incurred in locations with little uncertainty and a low cost for shifting the segmentation boundary in locations with high uncertainty.

Experimental results for segmenting the masseter muscle from CT data are presented showing the advantage of including the knowledge about local segmentation uncertainties into the segmentation framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ali, A.M., Farag, A.A., El-Baz, A.S.: Graph Cuts Framework for Kidney Segmentation with Prior Shape Constraints. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part I. LNCS, vol. 4791, pp. 384–392. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  2. Boykov, Y., Jolly, M.P.: Interactive Graph Cuts for Optimal Boundary and Region Segmentation of Objects in N-D Images. In: ICCV, vol. 1, pp. 105–112 (2001)

    Google Scholar 

  3. Boykov, Y., Kolmogorov, V.: An Experimental Comparison of Min-Cut/Max-Flow Algorithms for Energy Minimization in Vision. PAMI 26(9), 1124–1137 (2004)

    Article  Google Scholar 

  4. Cootes, T., Taylor, C., Cooper, D., Graham, J.: Active Shape Models; Their Training and Application. Computer Vision and Image Understanding 61(1), 38–59 (1995)

    Article  Google Scholar 

  5. Das, P., Veksler, O., Zavadsky, V., Boykov, Y.: Semi-Automatic Segmentation with Compact Shape Prior. Image and Vision Computing 27(1), 206–219 (2009)

    Article  Google Scholar 

  6. Dedner, A., Lüthi, M., Albrecht, T., Vetter, T.: Curvature Guided Level Set Registration using Adaptive Finite Elements. In: Pattern Recognition, pp. 527–536 (2007)

    Google Scholar 

  7. El-Zehiry, N., Elmaghraby, A.: Graph Cut Based Deformable Model with Statistical Shape Priors. In: ICPR, pp. 1–4 (2008)

    Google Scholar 

  8. Freedman, D., Zhang, T.: Interactive Graph Cut Based Segmentation with Shape Priors. In: CVPR, pp. 755–762 (2005)

    Google Scholar 

  9. Freiman, M., Kronman, A., Esses, S.J., Joskowicz, L., Sosna, J.: Non-parametric Iterative Model Constraint Graph min-cut for Automatic Kidney Segmentation. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010, Part III. LNCS, vol. 6363, pp. 73–80. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  10. Leventon, M.E., Grimson, W.E.L., Faugeras, O.: Statistical Shape Influence in Geodesic Active Contours. In: CVPR, p. 1316 (2000)

    Google Scholar 

  11. Lüthi, M., Albrecht, T., Vetter, T.: Probabilistic Modeling and Visualization of the Flexibility in Morphable Models. In: Mathematics of Surfaces, pp. 251–264 (2009)

    Google Scholar 

  12. Majeed, T., Fundana, K., Lüthi, M., Kiriyanthan, S., Beinemann, J., Cattin, P.C.: Using a Flexibility Constrained 3D Statistical Shape Model for Robust MRF-Based Segmentation. In: MMBIA, pp. 57–64 (2012)

    Google Scholar 

  13. Malcolm, J., Rathi, Y., Tannenbaum, A.: Graph Cut Segmentation with Nonlinear Shape Priors. In: ICIP, vol. 4, pp. 365–368 (2007)

    Google Scholar 

  14. Slabaugh, G.G., Unal, G.: Graph Cuts Segmentation Using an Elliptical Shape Prior. In: ICIP, pp. 1222–1225 (2005)

    Google Scholar 

  15. Veksler, O.: Star Shape Prior for Graph-Cut Image Segmentation. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 454–467. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  16. Blanz, V., Vetter, T.: A Morphable Model for the Synthesis of 3D Faces. In: Computer Graphics and Interactive Techniques, pp. 187–194 (1999)

    Google Scholar 

  17. Zhang, S., Zhan, Y., Dewan, M., Huang, J., Metaxas, D.N., Zhou, X.S.: Sparse Shape Composition: A New Framework for Shape Prior Modeling. In: CVPR, pp. 1025–1032 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Majeed, T., Fundana, K., Kiriyanthan, S., Beinemann, J., Cattin, P. (2013). Graph Cut Segmentation Using a Constrained Statistical Model with Non-linear and Sparse Shape Optimization. In: Menze, B.H., Langs, G., Lu, L., Montillo, A., Tu, Z., Criminisi, A. (eds) Medical Computer Vision. Recognition Techniques and Applications in Medical Imaging. MCV 2012. Lecture Notes in Computer Science, vol 7766. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36620-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36620-8_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36619-2

  • Online ISBN: 978-3-642-36620-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics