Nothing Special   »   [go: up one dir, main page]

Skip to main content

Best Practices in Reporting Iris Recognition Results

  • Conference paper
  • First Online:
Soft Computing Applications

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 357))

  • 1012 Accesses

Abstract

This article discusses old and new ways of estimating the performance of an actual or simulated iris recognition system, old and new manners of comparing different actual or simulated iris recognition systems in terms of security and comfort, and makes some considerations on choosing and comparing the processing methods engaged as subtasks of iris recognition. Along the discussion, from time to time, the article summarizes and points out to the open problems and to the best practices on a given topic, selected strictly on a logical basis, regardless if the practices under discussion are popular or not today, regardless the degree of consensus explicitly or implicitly expressed in the current community and literature of the field on the topics at hand.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cross-Sensor Comparison Competition 2013. http://www.btas2013.org/competitions-2/

  2. CCIR2014. http://biometrics.idealtest.org/2014/CCIR2014.jsp

  3. Daugman JG (1993) High confidence visual recognition of persons by a test of statistical independence. IEEE Trans Pattern Anal Mach Intell 15(11):1148–1161. doi:10.1109/34.244676

    Google Scholar 

  4. Daugman JG (2000) Biometric decision landscapes, Technical Report TR482, University of Cambridge, Computer Laboratory

    Google Scholar 

  5. Daugman JG, Downing C (2001) Epigenetic randomness, complexity, and singularity of human iris patterns. Proc Royal Soc B Biological Sciences 268:1737–1740. doi:10.1098/rspb.2001.1696

    Google Scholar 

  6. Daugman JG (2001) Statistical richness of visual phase information: update on recognition persons by iris patterns. Int. J. Comput Vis 45(1):25–38

    Article  MATH  Google Scholar 

  7. Daugman JG (2003) Demodulation by complex-valued wavelets for stochastic pattern recognition. Int J Wavelets Multiresolut Inf Process 1(1):1–17. doi:10.1142/S0219691303000025

    Article  MATH  Google Scholar 

  8. Daugman JG (2003) The importance of being random: statistical principles of iris recognition. Pattern Recogn 36:279–291. doi:10.1016/S0031-3203(02)00030-4

    Article  Google Scholar 

  9. Balas VE, Noaica CM, Popa JR, Munteanu C, Stroescu VC (2014) Establishing PNN-based iris code to identity fuzzy membership for consistent enrollment. In: Proceedings of 6th IEEE international conference on soft computing and applications, Timisoara, Romania, 24–26 July 2014

    Google Scholar 

  10. Popescu-Bodorin N, Balas VE (2012) Learning Iris biometric digital identities for secure authentication-a neural-evolutionary perspective pioneering intelligent iris identification. In: Recent advances in intelligent engineering systems, Springer, Berlin, pp 409–434. doi:10.1007/978-3-642-23229-9_19

    Google Scholar 

  11. Popescu-Bodorin N, Balas VE (2011) Exploratory simulation of an intelligent iris verifier distributed system. In: Proceedings of 6th IEEE international symposium on applied computational intelligence, IEEE Press, pp 259–262. ISBN 978-1-4244-9108-7

    Google Scholar 

  12. Popescu-Bodorin N, Balas VE, Motoc IM (2011) Iris codes classification using discriminant and witness directions. In: Proceedings of 5th IEEE international symposium on computational intelligence and intelligent informatics, IEEE Press, Floriana, Malta, 15–17 Sept, pp 143–148. doi:10.1109/ISCIII.2011.6069760

  13. Popescu-Bodorin N, Balas VE (2014) Fuzzy Membership, possibility, probability and negation in biometrics. Acta Polytech Hung 11(50), No. 4/2014:79–100

    Google Scholar 

  14. Turing AM (1950) Computing machinery and intelligence. Mind 59:433–460

    Article  MathSciNet  Google Scholar 

  15. Balas VE, Motoc IM, Barbulescu A (2013) Combined Haar-Hilbert and Log-Gabor based iris encoders, Studies in computational intelligence, New concepts and applications in soft computing, vol 417. Springer, Heidelberg, pp 1–26. doi:10.1007/978-3-642-28959-0_1

    Google Scholar 

  16. Proença H, Alexandre LA (2007) Iris recognition-A method to increase the robustness to noisy Imaging environments through the selection of the higher discriminating features. In: International conference on computational intelligence and multimedia applications, vol 3. IEEE, pp 301–307. doi:10.1109/ICCIMA.2007.119

  17. Krichen E, Chenafa M, Garcia-Salicetti S, Dorizzi B (2007) Color-based iris verification. In: advances in biometrics, Springer, Berlin, pp. 997–1005. doi:10.1007/978-3-540-74549-5_104

  18. Radu P, Sirlantzis K, Howells WGJ, Deravi F, Hoque S (2011) Information fusion for unconstrained iris recognition. Int J Hybrid Inf Technol 4(4)

    Google Scholar 

  19. Ayer AJ (1936) Language, truth, and logic. Victor Gollanez Ltd., London

    Google Scholar 

  20. Matheny AP, Dolan AB (1975) Changes in eye colour during early childhood-sex and genetic differences. Ann Hum Biol 2(2):191–196

    Article  Google Scholar 

  21. Bito LZ (2001) A new approach to the medical management of glaucoma, from the bench to the clinic, and beyond-the Proctor Lecture. Invest Ophthalmol Vis Sci 42(6):1126–1133

    Google Scholar 

  22. Bito LZ, Matheny A, Cruickshanks KJ, Nondahl DM, Carino OB (1997) Eye color changes past early childhood-the louisville twin study. Arch Ophthalmol 115(5):659–663

    Article  Google Scholar 

  23. StromaMedical. http://www.stromamedical.com

  24. Popescu-Bodorin N, Balas VE, Motoc IM (2013) The biometric menagerie—a fuzzy and inconsistent concept, Soft computing applications. Adv Intell Syst Comput 195:27–43. doi:10.1007/978-3-642-33941-7_6 Springer Verlag

    Article  Google Scholar 

  25. Motoc IM, Noaica CM, Badea R, Ghica CG (2013) Noise influence on the fuzzy-linguistic partitioning of iris code space, Soft computing applications. Adv Intell Syst Comput 195:71–82. doi:10.1007/978-3-642-33941-7_9

    Article  Google Scholar 

  26. Popescu-Bodorin N, Lucian G, Balas VE, Munteanu C, Manu I, Herea A, Stroescu V (2013) Cross-Sensor Comparison-LG4000-to-LG2200. Technical Report 460/24-07-2013, Rev. No. 4/30-09-2013, University of South-East Europe Lumina, Bucharest, Romania

    Google Scholar 

  27. Mansfield AJ, Wayman JL (2002) Best practices in testing and reporting performance of biometric devices. Middlesex, UK-Centre for Mathematics and Scientific Computing, National Physical Laboratory, Teddington, pp 1–36

    Google Scholar 

  28. Quinn GW, Grother P, Ngan M (2013) IREX IV: part 1, evaluation of iris identification algorithms. NIST Interagency Report 7949, Information Access Division, National Institute of Standards and Technology

    Google Scholar 

  29. Popescu-Bodorin N, Balas VE (2010) Comparing Haar-Hilbert and Log-Gabor based iris encoders on bath iris image database. In: Proceedings 4th International Workshop on soft computing applications, IEEE Press, pp 191–196. doi:10.1109/SOFA.2010.5565599

  30. CASIA Iris Image Database. http://biometrics.idealtest.org/

Download references

Acknowledgments

This work was partially supported by the University of South-East Europe Lumina (Bucharest, Romania), Lumina Foundation (Bucharest, Romania), and Intelligent Systems Laboratory (Aurel Vlaicu University of Arad, Romania).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolaie Popescu-Bodorin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Popescu-Bodorin, N., Balas, V.E. (2016). Best Practices in Reporting Iris Recognition Results. In: Balas, V., Jain, L., Kovačević, B. (eds) Soft Computing Applications. Advances in Intelligent Systems and Computing, vol 357. Springer, Cham. https://doi.org/10.1007/978-3-319-18416-6_64

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18416-6_64

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18415-9

  • Online ISBN: 978-3-319-18416-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics