Abstract
We present a new approach to mine dependencies between sequences of interval-based events that link two events if they occur in a similar manner, one being often followed by the other one in the data. The proposed technique is robust to temporal variability of events and determines the most appropriate time intervals whose validity is assessed by a \(\chi ^2\) test. TEDDY algorithm, TEmporal Dependency DiscoverY, prunes the search space while certifying the discovery of all valid and significant temporal dependencies. We present a real-world case study of balance bicycles into the Bike Sharing System of Lyon.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agrawal, R., Srikant, R.: Mining sequential patterns. In: ICDE, pp. 3–14 (1995)
Akdere, M., Çetintemel, U., Tatbul, N.: Plan-based complex event detection across distributed sources. PVLDB 1(1), 66–77 (2008)
Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. MIT Press, Cambridge (2009)
Giannotti, F., Nanni, M., Pedreschi, D.: Efficient mining of temporally annotated sequences. In: SDM (2006)
Golab, L., Karloff, H.J., Korn, F., Saha, A., Srivastava, D.: Sequential dependencies. PVLDB 2(1), 574–585 (2009)
Keogh, E.J., Ratanamahatana, C.A.: Exact indexing of dynamic time warping. Knowl. Inf. Syst. 7(3), 358–386 (2005)
Li, M., Mani, M., Rundensteiner, E.A., Lin, T.: Constraint-aware complex event pattern detection over streams. In: Kitagawa, H., Ishikawa, Y., Li, Q., Watanabe, C. (eds.) DASFAA 2010. LNCS, vol. 5982, pp. 199–215. Springer, Heidelberg (2010)
Li, M., Mani, M., Rundensteiner, E.A., Lin, T.: Complex event pattern detection over streams with interval-based temporal semantics. In: DEBS, pp. 291–302 (2011)
Liu, M., Li, M., Golovnya, D., Rundensteiner, E.A., Claypool, K.T.: Sequence pattern query processing over out-of-order event streams. In: ICDE, pp. 784–795 (2009)
Mannila, H., Toivonen, H., Verkamo, A.I.: Discovery of frequent episodes in event sequences. Data Min. Knowl. Discov. 1(3), 259–289 (1997)
Mendes, L.F., Ding, B., Han, J.: Stream sequential pattern mining with precise error bounds. In: IEEE ICDM, pp. 941–946 (2008)
Morishita, S., Sese, J.: Traversing itemset lattice with statistical metric pruning. In: PODS, pp. 226–236 (2000)
Pearson, K.: On the criterion. Psychol. Mag. 1, 157–175 (1900)
Tang, L., Li, T., Shwartz, L.: Discovering lag intervals for temporal dependencies. In: KDD, pp. 633–641 (2012)
Wang, X., Mueen, A., Ding, H., Trajcevski, G., Scheuermann, P., Keogh, E.J.: Experimental comparison of representation methods and distance measures for time series data. Data Min. Knowl. Discov. 26(2), 275–309 (2013)
Wu, S.-Y., Chen, Y.-L.: Mining nonambiguous temporal patterns for interval-based events. IEEE Trans. Knowl. Data Eng. 19(6), 742–758 (2007)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Plantevit, M., Scuturici, VM., Robardet, C. (2015). Temporal Dependency Detection Between Interval-Based Event Sequences. In: Appice, A., Ceci, M., Loglisci, C., Manco, G., Masciari, E., Ras, Z. (eds) New Frontiers in Mining Complex Patterns. NFMCP 2014. Lecture Notes in Computer Science(), vol 8983. Springer, Cham. https://doi.org/10.1007/978-3-319-17876-9_9
Download citation
DOI: https://doi.org/10.1007/978-3-319-17876-9_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-17875-2
Online ISBN: 978-3-319-17876-9
eBook Packages: Computer ScienceComputer Science (R0)