Nothing Special   »   [go: up one dir, main page]

Skip to main content

Temporal Dependency Detection Between Interval-Based Event Sequences

  • Conference paper
  • First Online:
New Frontiers in Mining Complex Patterns (NFMCP 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8983))

Included in the following conference series:

  • 619 Accesses

Abstract

We present a new approach to mine dependencies between sequences of interval-based events that link two events if they occur in a similar manner, one being often followed by the other one in the data. The proposed technique is robust to temporal variability of events and determines the most appropriate time intervals whose validity is assessed by a \(\chi ^2\) test. TEDDY algorithm, TEmporal Dependency DiscoverY, prunes the search space while certifying the discovery of all valid and significant temporal dependencies. We present a real-world case study of balance bicycles into the Bike Sharing System of Lyon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.grandlyon.com/.

  2. 2.

    http://smartdata.grandlyon.com/.

References

  1. Agrawal, R., Srikant, R.: Mining sequential patterns. In: ICDE, pp. 3–14 (1995)

    Google Scholar 

  2. Akdere, M., Çetintemel, U., Tatbul, N.: Plan-based complex event detection across distributed sources. PVLDB 1(1), 66–77 (2008)

    Google Scholar 

  3. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. MIT Press, Cambridge (2009)

    MATH  Google Scholar 

  4. Giannotti, F., Nanni, M., Pedreschi, D.: Efficient mining of temporally annotated sequences. In: SDM (2006)

    Google Scholar 

  5. Golab, L., Karloff, H.J., Korn, F., Saha, A., Srivastava, D.: Sequential dependencies. PVLDB 2(1), 574–585 (2009)

    Google Scholar 

  6. Keogh, E.J., Ratanamahatana, C.A.: Exact indexing of dynamic time warping. Knowl. Inf. Syst. 7(3), 358–386 (2005)

    Article  Google Scholar 

  7. Li, M., Mani, M., Rundensteiner, E.A., Lin, T.: Constraint-aware complex event pattern detection over streams. In: Kitagawa, H., Ishikawa, Y., Li, Q., Watanabe, C. (eds.) DASFAA 2010. LNCS, vol. 5982, pp. 199–215. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  8. Li, M., Mani, M., Rundensteiner, E.A., Lin, T.: Complex event pattern detection over streams with interval-based temporal semantics. In: DEBS, pp. 291–302 (2011)

    Google Scholar 

  9. Liu, M., Li, M., Golovnya, D., Rundensteiner, E.A., Claypool, K.T.: Sequence pattern query processing over out-of-order event streams. In: ICDE, pp. 784–795 (2009)

    Google Scholar 

  10. Mannila, H., Toivonen, H., Verkamo, A.I.: Discovery of frequent episodes in event sequences. Data Min. Knowl. Discov. 1(3), 259–289 (1997)

    Article  Google Scholar 

  11. Mendes, L.F., Ding, B., Han, J.: Stream sequential pattern mining with precise error bounds. In: IEEE ICDM, pp. 941–946 (2008)

    Google Scholar 

  12. Morishita, S., Sese, J.: Traversing itemset lattice with statistical metric pruning. In: PODS, pp. 226–236 (2000)

    Google Scholar 

  13. Pearson, K.: On the criterion. Psychol. Mag. 1, 157–175 (1900)

    Google Scholar 

  14. Tang, L., Li, T., Shwartz, L.: Discovering lag intervals for temporal dependencies. In: KDD, pp. 633–641 (2012)

    Google Scholar 

  15. Wang, X., Mueen, A., Ding, H., Trajcevski, G., Scheuermann, P., Keogh, E.J.: Experimental comparison of representation methods and distance measures for time series data. Data Min. Knowl. Discov. 26(2), 275–309 (2013)

    Article  MathSciNet  Google Scholar 

  16. Wu, S.-Y., Chen, Y.-L.: Mining nonambiguous temporal patterns for interval-based events. IEEE Trans. Knowl. Data Eng. 19(6), 742–758 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Plantevit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Plantevit, M., Scuturici, VM., Robardet, C. (2015). Temporal Dependency Detection Between Interval-Based Event Sequences. In: Appice, A., Ceci, M., Loglisci, C., Manco, G., Masciari, E., Ras, Z. (eds) New Frontiers in Mining Complex Patterns. NFMCP 2014. Lecture Notes in Computer Science(), vol 8983. Springer, Cham. https://doi.org/10.1007/978-3-319-17876-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17876-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17875-2

  • Online ISBN: 978-3-319-17876-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics