Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Mining approximate interval-based temporal dependencies

  • Original Paper
  • Published:
Acta Informatica Aims and scope Submit manuscript

Abstract

Temporal functional dependencies add valid time to classical functional dependencies in order to express data integrity constraints over the flow of time. If the temporal dimension adopted is an interval, we have to deal with interval-based temporal functional dependencies (ITFDs for short), which consider different interval relations between tuple valid times. The related approximate problem is when we want to check whether our data satisfy, without any constraint for the schema, a given ITFD under a given error threshold \(0 \leqslant \epsilon \leqslant 1\). This can be rephrased as: given a relation instance r, is it possible to delete at most \(\epsilon \cdot |r|\) tuples from it in such a way that the resulting instance satisfies the given ITFD? This optimization problem, ITFD-Approx for short, may represent a way to discover (i.e., mine) important dependencies among attribute values in a database. In this paper we analyze the complexity of problem ITFD-Approx restricting ourselves to Allen’s interval relations: we shall see how the complexity of such a problem may significantly change, depending on the considered interval relation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. A function \(f:{\mathbb {N}}\rightarrow {\mathbb {N}}\) is super-additive if for every pair of elements \(x,y \in {\mathbb {N}}\) we have that \(f(x+y)\geqslant f(x) + f(y)\).

  2. This is the formulation of the problem in its evaluation version and the same assumption made in Sect. 2.2 for \(\sim \)-MaxConsistent holds for Max2Sat too.

  3. Notice that in the terminology of database repairing we have that boldfaced lower-case letters (e.g. \({\mathbf {x}}, {\mathbf {y}}, \ldots \)) denote sets of attributes while lower case letters (e.g. \(x, y, \ldots \)) denote a single attribute.

References

  1. Afrati, F.N., Kolaitis, P.G.: Repair checking in inconsistent databases: algorithms and complexity. In: Fagin [15], pp. 31–41

  2. Allen, James F.: Maintaining knowledge about temporal intervals. Commun. ACM 26(11), 832–843 (1983)

    Article  MATH  Google Scholar 

  3. Bettini, Claudio, Jajodia, Sushil G., Wang, Sean X.: Time Granularities in Databases, Data Mining and Temporal Reasoning. Springer-Verlag New York Inc., Secaucus, NJ (2000)

    Book  MATH  Google Scholar 

  4. Bresolin, Davide, Goranko, Valentin, Montanari, Angelo, Sala, Pietro: Complete and terminating tableau for the logic of proper subinterval structures over dense orderings. Electron. Notes Theor. Comput. Sci. 231, 131–151 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bresolin, Davide, Goranko, Valentin, Montanari, Angelo, Sala, Pietro: Tableaux for logics of subinterval structures over dense orderings. J. Log. Comput. 20(1), 133–166 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chomicki, Jan, Marcinkowski, Jerzy: Minimal-change integrity maintenance using tuple deletions. Inf. Comput. 197(1–2), 90–121 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Codd, E.F.: Normalized data structure: a brief tutorial. In: Codd, E.F., Dean, A.L. (eds.) SIGFIDET Workshop, pp. 1–17. ACM (1971)

  8. Combi, Carlo, Keravnou-Papailiou, Elpida, Shahar, Yuval: Temporal Information Systems in Medicine. Springer-Verlag New York Inc., New York, NY (2010)

    Book  Google Scholar 

  9. Combi, Carlo, Mantovani, Matteo, Sabaini, Alberto, Sala, Pietro, Amaddeo, Francesco, Moretti, Ugo, Pozzi, Giuseppe: Mining approximate temporal functional dependencies with pure temporal grouping in clinical databases. Comput. Biol. Med. 62, 306–324 (2015)

    Article  Google Scholar 

  10. Combi, C., Montanari, A., Pozzi, G.: The T4SQL temporal query language. In: Silva, M.J., Laender, A.H.F., Baeza-Yates, R.A., McGuinness, D.L., Olstad, B., Olsen, Ø.H., Falcão, A. (eds.) Proceedings of the Sixteenth ACM Conference on Information and Knowledge Management, (CIKM), Lisbon, Portugal, November 6–10, 2007, pp. 193–202. ACM (2007)

  11. Combi, C., Montanari, A., Sala, P.: A uniform framework for temporal functional dependencies with multiple granularities. In: Pfoser, D., Tao, Y., Mouratidis, K., Nascimento, M.A., Mokbel, M.F., Shekhar, S., Huang, Y. (eds.) Advances in Spatial and Temporal Databases—12th International Symposium, (SSTD) Minneapolis, MN, USA, August 24–26, 2011, Proceedings, volume 6849 of Lecture Notes in Computer Science, pp. 404–421. Springer (2011)

  12. Combi, C., Parise, P., Sala, P., Pozzi, G.: Mining approximate temporal functional dependencies based on pure temporal grouping. In: Ding, W., Washio, T., Xiong, H., Karypis, G., Thuraisingham, B.M., Cook, D.J., Wu, X. (eds.) 13th IEEE International Conference on Data Mining Workshops, ICDM Workshops, TX, USA, December 7–10, 2013, pp. 258–265. IEEE Computer Society (2013)

  13. Combi, C., Sala, P.: Temporal functional dependencies based on interval relations. In: Combi, C., Leucker, M., Wolter, F. (eds.) Eighteenth International Symposium on Temporal Representation and Reasoning, (TIME), Lübeck , Germany, September 12–14, pp. 23–30. IEEE (2011)

  14. Combi, Carlo, Sala, Pietro: Interval-based temporal functional dependencies: specification and verification. Ann. Math. Artif. Intell. 71(1–3), 85–130 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fagin, R. (ed.): Database Theory—ICDT 2009, 12th International Conference, St. Petersburg, Russia, March 23–25, 2009, Proceedings, volume 361 of ACM International Conference Proceeding Series. ACM (2009)

  16. Fontaine, G.: Why is it hard to obtain a dichotomy for consistent query answering? In: 28th Annual ACM/IEEE Symposium on Logic in Computer Science, (LICS), New Orleans, LA, USA, June 25–28, 2013, pp. 550–559. IEEE Computer Society (2013)

  17. Garey, M.R., Johnson, David S., Stockmeyer, Larry J.: Some simplified np-complete graph problems. Theor. Comput. Sci. 1(3), 237–267 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  18. Huhtala, Y., Kärkkäinen, J., Porkka, P., Toivonen, H.: Efficient discovery of functional and approximate dependencies using partitions. In: Urban, S.D., Bertino, E. (eds.) Proceedings of the Fourteenth International Conference on Data Engineering (ICDE), Orlando, Florida, USA, February 23–27, 1998, pp. 392–401. IEEE Computer Society (1998)

  19. Huhtala, Ykä, Kärkkäinen, Juha, Porkka, Pasi, Toivonen, Hannu: Tane: An efficient algorithm for discovering functional and approximate dependencies. Comput. J. 42(2), 100–111 (1999)

    Article  MATH  Google Scholar 

  20. Jensen, C.S., Snodgrass, R.T.: Temporal database. In: Liu and Özsu [24], pp. 2957–2960

  21. Jensen, Christian S., Snodgrass, Richard T., Soo, Michael D.: Extending existing dependency theory to temporal databases. IEEE Trans. Knowl. Data Eng. 8(4), 563–582 (1996)

    Article  Google Scholar 

  22. Kivinen, Jyrki, Mannila, Heikki: Approximate inference of functional dependencies from relations. Theoret. Comput. Sci. 149(1), 129–149 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kolahi, S., Lakshmanan, L.V.S.: On approximating optimum repairs for functional dependency violations. In: Fagin [15], pp. 53–62

  24. Liu, L., Özsu, M.T. (eds.): Encyclopedia of Database Systems. Springer, Berlin (2009)

    MATH  Google Scholar 

  25. Mannila, Heikki, Räihä, Kari-Jouko: On the complexity of inferring functional dependencies. Discrete Appl. Math. 40(2), 237–243 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  26. Mannila, Heikki, Räihä, Kari-Jouko: Algorithms for inferring functional dependencies from relations. Data Knowl. Eng. 12(1), 83–99 (1994)

    Article  MATH  Google Scholar 

  27. Marcinkowski, Jerzy, Michaliszyn, Jakub: The undecidability of the logic of subintervals. Fundam. Inform. 131(2), 217–240 (2014)

    MathSciNet  MATH  Google Scholar 

  28. Papadimitriou, Christos H., Steiglitz, Kenneth: Combinatorial Optimization: Algorithms and Complexity. Prentice-Hall, Upper Saddle River (1982)

    MATH  Google Scholar 

  29. Sala, P.: Approximate interval-based temporal dependencies: the complexity landscape. In: Cesta, A., Combi, C., Laroussinie, F. (eds.) 21st International Symposium on Temporal Representation and Reasoning, TIME 2014, Verona, Italy, September 8–10, 2014, pp. 69–78. IEEE Computer Society (2014)

  30. Venema, Yde: A modal logic for chopping intervals. J. Log. Comput. 1(4), 453–476 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  31. Vianu, Victor: Dynamic functional dependencies and database aging. J. ACM 34(1), 28–59 (1987)

    Article  MathSciNet  Google Scholar 

  32. Wang, Xiaoyang Sean, Bettini, Claudio, Brodsky, Alexander, Jajodia, Sushil: Logical design for temporal databases with multiple granularities. ACM Trans. Database Syst. 22(2), 115–170 (1997)

    Article  Google Scholar 

  33. Wijsen, Jef: Temporal fds on complex objects. ACM Trans. Database Syst. 24(1), 127–176 (1999)

    Article  Google Scholar 

  34. Wijsen, J.: Temporal dependencies. In: Liu and Özsu [24], pp. 2960–2966

  35. Wijsen, J.: Temporal integrity constraints. In: Liu and Özsu [24], pp. 2976–2982

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pietro Sala.

Ethics declarations

Ethical statement

Pietro Sala is founded by the Department of Computer Science and the Department of Public Health and Community Medicine, Pharmacology section both of the University of Verona, in the context of the project “An interval-based approach for data analysis and workflow modelling in medical domains”.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Combi, C., Sala, P. Mining approximate interval-based temporal dependencies. Acta Informatica 53, 547–585 (2016). https://doi.org/10.1007/s00236-015-0246-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00236-015-0246-x

Navigation