Nothing Special   »   [go: up one dir, main page]

Skip to main content

An Approximation Algorithm for Time Optimal Multi-Robot Routing

  • Chapter
  • First Online:
Algorithmic Foundations of Robotics XI

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 107))

  • 3805 Accesses

Abstract

This paper presents a polynomial time approximation algorithm for Multi-Robot Routing. The Multi-Robot Routing problem seeks to plan paths for a team of robots to visit a large number of interchangeable goal locations as quickly as possible. As a result of providing a constant factor bound on the suboptimality of the total distance any robot travels, the total completion time, or makespan, for robots to visit every goal vertex using this plan is no more than 5 times the optimal completion time. This result is significant because it provides a rigorous guarantee on time optimality, important in applications in which teams of robots carry out time-critical missions. These applications include autonomous exploration, surveillance, first response, and search and rescue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arkin, E.M., Hassin, R., Levin, A.: Approximations for minimum and min-max vehicle routing problems. J. Algorithms 59(1), 1–18 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  2. Armstrong, R.D., Jin, Z.: Solving linear bottleneck assignment problems via strong spanning trees. Oper. Res. Lett. 12(3), 179–180 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  3. Burkard, R.E., Cela, E.: Linear Assignment Problems and Extensions. Springer, Berlin (1999)

    Google Scholar 

  4. Carlsson, J., Ge, D., Subramaniam, A., Wu, A., Ye, Y.: Solving min-max multi-depot vehicle routing problem. Lectures on Global Optimization. Fields Institute Communications, vol. 55, pp. 31-46 (2009)

    Google Scholar 

  5. Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, DTIC Document (1976)

    Google Scholar 

  6. Cook, W., Rohe, A.: Computing minimum-weight perfect matchings. INFORMS J. Comput. 11(2), 138–148 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik 1(1), 269–271 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  8. Eksioglu, B., Vural, A.V., Reisman, A.: The vehicle routing problem: a taxonomic review. Comput. Ind. Eng. 57(4), 1472–1483 (2009)

    Article  Google Scholar 

  9. Frederickson, G.N., Hecht, M.S., Kim, C.E.: Approximation algorithms for some routing problems. In: 17th Annual Symposium on Foundations of Computer Science, pp. 216–227. IEEE (1976)

    Google Scholar 

  10. Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network optimization algorithms. J. ACM (JACM) 34(3), 596–615 (1987)

    Article  MathSciNet  Google Scholar 

  11. Hierholzer, C., Wiener, C.: Über die möglichkeit, einen linienzug ohne wiederholung und ohne unterbrechung zu umfahren. Mathematische Annalen 6(1), 30–32 (1873)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kolmogorov, V., Blossom, V.: A new implementation of a minimum cost perfect matching algorithm. Math. Program. Comput. 1(1), 43–67 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proc. Am. Math. Soc. 7(1), 48–50 (1956)

    Article  MATH  MathSciNet  Google Scholar 

  14. Lawler, E.L.: Combinatorial Optimization: Networks and Matroids. Courier Dover Publications (1976)

    Google Scholar 

  15. Nagy, G., Salhi, S.D.: Heuristic algorithms for single and multiple depot vehicle routing problems with pickups and deliveries. Eur. J. Oper. Res. 162(1), 126–141 (2005)

    Article  MATH  Google Scholar 

  16. Ren, C.: Solving min-max vehicle routing problem. J. Softw. (1796217X) 6(9) (2011)

    Google Scholar 

  17. Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for multiple depot multiple traveling salesman problem. In: Algorithm Theory-SWAT 2010, pp. 127–138. Springer, Berlin (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Turpin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Turpin, M., Michael, N., Kumar, V. (2015). An Approximation Algorithm for Time Optimal Multi-Robot Routing. In: Akin, H., Amato, N., Isler, V., van der Stappen, A. (eds) Algorithmic Foundations of Robotics XI. Springer Tracts in Advanced Robotics, vol 107. Springer, Cham. https://doi.org/10.1007/978-3-319-16595-0_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16595-0_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16594-3

  • Online ISBN: 978-3-319-16595-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics