Nothing Special   »   [go: up one dir, main page]

Skip to main content

An Effective Algorithmic Framework for Near Optimal Multi-robot Path Planning

  • Chapter
  • First Online:
Robotics Research

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 2))

Abstract

We present a centralized algorithmic framework for solving multi-robot path planning problems in general, two-dimensional, continuous environments while minimizing globally the task completion time. The framework obtains high levels of effectiveness through the composition of an optimal discretization of the continuous environment and the subsequent fast, near-optimal resolution of the resulting discrete planning problem. This principled approach achieves orders of magnitudes better performance with respect to both speed and the supported robot density. For a wide variety of environments, our method is shown to compute globally near-optimal solutions for 50 robots in seconds with robots packed close to each other. In the extreme, the method can consistently solve problems with hundreds of robots that occupy over 30% of the free space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Warehousing systems from Kiva Systems [40] can work effectively with hundreds of robots. However, these robots essentially live on a grid within a structured environment.

  2. 2.

    Due to limited space, detailed description of the ILP algorithm (Sect. 4) and larger versions of some figures are included in the online material available at http://arxiv.org/abs/1505.00200. An accompanying video demonstrating our algorithm and software developed in this paper are available from the corresponding author’s website.

  3. 3.

    Note that our algorithmic framework also applies to other time- and distance-based optimality objectives through the use of an appropriate discrete planning algorithm.

  4. 4.

    Equations (2) and (3) are unit-less given the unit disc robot assumption. If the robots have radius r, the right side of the inequalities from (2) and (3) should be scaled by a multiplicative factor of r.

  5. 5.

    These tilings are: triangular, trihexagonal, square, elongated triangular, hexagonal, truncated square, truncated trihexagonal, truncated hexagonal, snub square, rhombitrihexagonal, snub hexagonal.

References

  1. Alonso-Mora, J.: Collaborative Motion Planning for Multi-Agent Systems. Ph.D. thesis, ETH Zurich, March 2014

    Google Scholar 

  2. Bien, Z., Lee, J.: A minimum-time trajectory planning method for two robots. IEEE Trans. Robot. Autom. 8(3), 414–418 (1992)

    Article  Google Scholar 

  3. Buckley, S.J.: Fast motion planning for multiple moving robots. In: ICRA (1989)

    Google Scholar 

  4. Cgal, Computational Geometry Algorithms Library. http://www.cgal.org

  5. Erdmann, M.A., Lozano-Pérez, T.: On multiple moving objects. In: ICRA (1986)

    Google Scholar 

  6. Ghosh, S.K., Maheshwari, A., Pal, S.P., Saluja, S., Madhavan, C.V.: Characterizing and recognizing weak visibility polygons. Comput. Geom. 3(4), 213–233 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ghrist, R., O’Kane, J.M., LaValle, S.M.: Computing Pareto optimal coordinations on roadmaps. IJRR 24(11), 997–1010 (2005)

    Google Scholar 

  8. Griffith, E.J., Akella, S.: Coordinating multiple droplets in planar array digital microfluidic systems. IJRR 24(11), 933–949 (2005)

    Google Scholar 

  9. Gurobi Optimization Inc. Gurobi optimizer reference manual (2015)

    Google Scholar 

  10. Hopcroft, J.E., Schwartz, J.T., Sharir, M.: On the complexity of motion planning for multiple independent objects; PSPACE-hardness of the “warehouseman’s problem”. IJRR 3(4), 76–88 (1984)

    Google Scholar 

  11. Kant, K., Zucker, S.: Towards efficient trajectory planning: the path velocity decomposition. IJRR 5(3), 72–89 (1986)

    Google Scholar 

  12. Kavraki, L.E., Svestka, P., Latombe, J.-C., Overmars, M.H.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. Robot. Autom. 12(4), 566–580 (1996)

    Article  Google Scholar 

  13. Knepper, R.A., Rus, D.: Pedestrian-inspired sampling-based multi-robot collision avoidance. In: RO-MAN (2012)

    Google Scholar 

  14. Kornhauser, D., Miller, G., Spirakis, P.: Coordinating pebble motion on graphs, the diameter of permutation groups, and applications. In: FOCS (1984)

    Google Scholar 

  15. Krontiris, A., Sajid, Q., Bekris, K.: Towards using discrete multiagent pathfinding to address continuous problems. In: AAAI-WoMP (2012)

    Google Scholar 

  16. LaValle, S.M.: Rapidly-exploring random trees: A new tool for path planning. Technical report, Iowa State University, October 1998. Computer Science Department TR 98-11

    Google Scholar 

  17. LaValle, S.M., Hutchinson, S.A.: Optimal motion planning for multiple robots having independent goals. IEEE Trans. Robot. Autom. 14(6), 912–925 (1998)

    Article  Google Scholar 

  18. Lozano-Pérez, T., Wesley, M.A.: An algorithm for planning collision-free paths among polyhedral obstacles. Commun. ACM 22(10), 560–570 (1979)

    Article  Google Scholar 

  19. O’Donnell, P.A., Lozano-Pérez, T.: Deadlock-free and collision-free coordination of two robot manipulators. In: ICRA (1989)

    Google Scholar 

  20. Peasgood, M., Clark, C., McPhee, J.: A complete and scalable strategy for coordinating multiple robots within roadmaps. IEEE Trans. Robot. 24(2), 283–292 (2008)

    Article  Google Scholar 

  21. Peng, J., Akella, S.: Coordinating multiple robots with kinodynamic constraints along specified paths. In: Boissonat, J.-D., Burdick, J., Goldberg, K., Hutchinson, S. (eds.) Algorithmic Foundations of Robotics V, pp. 221–237. Springer, Berlin (2002)

    Google Scholar 

  22. Robert, W.: The Geometrical Foundation of Natural Structure. A Source Book of Design. Dover, New York (1978)

    Google Scholar 

  23. Ryan, M.R.K.: Exploiting subgraph structure in multi-robot path planning. J. Artif. Intell. Res. 31, 497–542 (2008)

    MATH  Google Scholar 

  24. Schwartz, J., Sharir, M.: On the piano movers’ problem: III. coordinating the motion of several independent bodies: the special case of circular bodies moving amidst polygonal barriers. IJRR 2(3), 46–75 (1983)

    MathSciNet  MATH  Google Scholar 

  25. Snape, J., Guy, S.J., van den Berg, J., Manocha, D.: Smooth coordination and navigation for multiple differential-drive robots. In: Khatib, O., Kumar, V., Sukhatme, G. (eds.) Experimental Robotics. Springer, Heidelberg (2014)

    Google Scholar 

  26. Snape, J.R.: Smooth and collision-free navigation for multiple mobile robots and video game characters. Ph.D. thesis, University of North Carolina at Chapel Hill (2012)

    Google Scholar 

  27. Solovey, K., Halperin, D.: \(k\)-color multi-robot motion planning. In: WAFR (2012)

    Google Scholar 

  28. Solovey, K., Salzman, O., Halperin, D.: Finding a needle in an exponential haystack: discrete RRT for exploration of implicit roadmaps in multi-robot motion planning. In: WAFR (2014)

    Google Scholar 

  29. Solovey, K., Yu, J., Zamir, O., Halperin, D.: Motion planning for unlabeled discs with optimality guarantees. In: RSS (2015)

    Google Scholar 

  30. Standley, T., Korf, R.: Complete algorithms for cooperative pathfinding problems. In: IJCAI (2011)

    Google Scholar 

  31. Švestka, P., Overmars, M.H.: Coordinated path planning for multiple robots. Robot. Auton. Syst. 23(3), 125–152 (1998)

    Article  Google Scholar 

  32. Turpin, M., Michael, N., Kumar, V.: Concurrent assignment and planning of trajectories for large teams of interchangeable robots. In: ICRA (2013)

    Google Scholar 

  33. van den Berg, J., Lin, M.C., Manocha, D.: Reciprocal velocity obstacles for real-time multi-agent navigation. In: ICRA (2008)

    Google Scholar 

  34. van den Berg, J., Overmars, M.: Prioritized motion planning for multiple robots. In: IROS (2005)

    Google Scholar 

  35. van den Berg, J., Snoeyink, J., Lin, M., Manocha, D.: Centralized path planning for multiple robots: optimal decoupling into sequential plans. In: RSS (2009)

    Google Scholar 

  36. van den Berg, J., Snape, J., Guy, S.J., Manocha, D.: Reciprocal collision avoidance with acceleration-velocity obstacles. In: ICRA (2011)

    Google Scholar 

  37. van der Stappen, A.F., Karamouzas, I., Geraerts, R.: Space-time group motion planning. In: WAFR (2012)

    Google Scholar 

  38. Wagner, G., Choset, H.: M*: a complete multirobot path planning algorithm with performance bounds. In: IROS (2011)

    Google Scholar 

  39. Wilson, R.M.: Graph puzzles, homotopy, and the alternating group. J. Combinat. Theo. (B) 16, 86–96 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  40. Wurman, P.R., D’Andrea, R., Mountz, M.: Coordinating hundreds of cooperative, autonomous vehicles in warehouses. AI Mag. 29(1), 9–19 (2008)

    Google Scholar 

  41. Yu, J., LaValle, S.M.: Fast, near-optimal computation for multi-robot path planning on graphs. In: AAAI (2013). Late breaking papers

    Google Scholar 

  42. Yu, J., LaValle, S.M.: Planning optimal paths for multiple robots on graphs. In: ICRA (2013)

    Google Scholar 

  43. Yu, J., LaValle, S.M.: Structure and intractability of optimal multi-robot path planning on graphs. In: AAAI (2013)

    Google Scholar 

  44. Yu, J., Rus, D.: Pebble motion on graphs with rotations: efficient feasibility tests and planning. In: WAFR (2014)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by ONR projects N00014-12-1-1000 and N00014-09-1-1051, and the Singapore-MIT Alliance on Research and Technology (SMART) Future of Urban Mobility project. We are grateful for the funding support that we receive. We also thank the reviewers for their insightful comments that helped significantly improve the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingjin Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Yu, J., Rus, D. (2018). An Effective Algorithmic Framework for Near Optimal Multi-robot Path Planning. In: Bicchi, A., Burgard, W. (eds) Robotics Research. Springer Proceedings in Advanced Robotics, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-319-51532-8_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51532-8_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51531-1

  • Online ISBN: 978-3-319-51532-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics