Abstract
Many published articles in automatic music classification deal with the development and experimental comparison of algorithms—however the final statements are often based on figures and simple statistics in tables and only a few related studies apply proper statistical testing for a reliable discussion of results and measurements of the propositions’ significance. Therefore we provide two simple examples for a reasonable application of statistical tests for our previous study recognizing instruments in polyphonic audio. This task is solved by multi-objective feature selection starting from a large number of up-to-date audio descriptors and optimization of classification error and number of selected features at the same time by an evolutionary algorithm. The performance of several classifiers and their impact on the pareto front are analyzed by means of statistical tests.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bischl, B., Eichhoff, M., & Weihs, C. (2010). Selecting groups of audio features by statistical tests and the group lasso. In Proceedings of the 9th ITG Fachtagung Sprachkommunikation. Berlin: VDE Verlag.
Blume, H., Bischl, B., Botteck, M., Igel, C., Martin, R., & Rötter, G. (2011). Huge music archives on mobile devices. IEEE Signal Processing Magazine, 28(4), 24–39.
Downie, S. (2003). Music information retrieval. Annual Review of Information Science and Technology, 37(1), 295–340.
Eronen, A. (2001). Automatic Musical Instrument Recognition (Master’s thesis). Department of Information Technology, Tampere University of Technology.
Fiebrink, R., & Fujinaga, I. (2006). Feature selection pitfalls and music classification. In Proceedings of the 7th International Conference on Music Information Retrieval (ISMIR) (pp. 340–341). University of Victoria.
Fuhrmann, S. (2012). Automatic Musical Instrument Recognition from Polyphonic Music Audio Signals (Ph.D. thesis). Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona.
Gillick, L., & Cox, S. (1989). Some statistical issues in the comparison of speech recognition algorithms. In Proceedings of the IEEE Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 532–535). New York: IEEE.
Hollander, M., & Wolfe, D. A. (1973). Nonparametric statistical methods. New York: Wiley.
Mckay, C. (2010). Automatic Music Classification with jMIR (Ph.D. thesis). Department of Music Research, Schulich School of Music, McGill University, Montreal.
Meng, A., Ahrendt, P., Larsen, J., & Hansen, L. K. (2007). Temporal feature integration for music genre classification. IEEE Transactions on Audio, Speech and Language Processing, 15(5), 1654–1664.
Noland, K., & Sandler, M. (2009). Influences of signal processing, tone profiles, and chord progressions on a model for estimating the musical key from audio. Computer Music Journal, 33(1), 42–56.
Vatolkin, I., Preuß, & Rudolph, G. (2011). Multi-objective feature selection in music genre and style recognition tasks. In Proceedings of the 2011 Genetic and Evolutionary Computation Conference (GECCO) (pp. 411–418). New York: ACM.
Vatolkin, I., Preuß, Rudolph, G., Eichhoff, M., & Weihs, C. (2012). Multi-objective evolutionary feature selection for instrument recognition in polyphonic audio mixtures. Soft Computing, 16(12), 2027–2047.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Vatolkin, I., Bischl, B., Rudolph, G., Weihs, C. (2014). Statistical Comparison of Classifiers for Multi-objective Feature Selection in Instrument Recognition. In: Spiliopoulou, M., Schmidt-Thieme, L., Janning, R. (eds) Data Analysis, Machine Learning and Knowledge Discovery. Studies in Classification, Data Analysis, and Knowledge Organization. Springer, Cham. https://doi.org/10.1007/978-3-319-01595-8_19
Download citation
DOI: https://doi.org/10.1007/978-3-319-01595-8_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-01594-1
Online ISBN: 978-3-319-01595-8
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)