Nothing Special   »   [go: up one dir, main page]

Skip to main content

Performance of Specific vs. Generic Feature Sets in Polyphonic Music Instrument Recognition

  • Conference paper
Evolutionary Multi-Criterion Optimization (EMO 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7811))

Included in the following conference series:

Abstract

Instrument identification in polyphonic audio recordings is a complex task which is beneficial for many music information retrieval applications. Due to the strong spectro-temporal differences between the sounds of existing instruments, different instrument-related features are required for building individual classification models. In our work we apply a multi-objective evolutionary feature selection paradigm to a large feature set minimizing both the classification error and the size of the used feature set. We compare two different feature selection methods. On the one hand we aim at building specific tradeoff feature sets which work best for the identification of a particular instrument. On the other hand we strive to design a generic feature set which on average performs comparably for all instrument classification tasks. The experiments show that the selected generic feature set approaches the performance of the selected instrument-specific feature sets, while a feature set specifically optimized for identifying a particular instrument yields degraded classification results if it is applied to other instruments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: Multiobjective Selection Based on Dominated Hypervolume. European Journal of Operational Research 181(3), 1653–1669 (2007)

    Article  MATH  Google Scholar 

  2. Bischl, B., Mersmann, O., Trautmann, H., Weihs, C.: Resampling Methods for Meta-Model Validation with Recommendations for Evolutionary Computation. Evolutionary Computation 20(2), 249–275 (2012)

    Article  Google Scholar 

  3. Bischl, B., Vatolkin, I., Preuss, M.: Selecting Small Audio Feature Sets in Music Classification by Means of Asymmetric Mutation. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6238, pp. 314–323. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  4. Brown, J.C.: Calculation of a constant Q spectral transform. Journal of the Acoustical Society of America 89(1), 425–434 (1991)

    Article  Google Scholar 

  5. Brown, J.C.: Computer identification of musical instruments using pattern recognition with cepstral coefficients as features. Journal of the Acoustical Society of America 105(3), 1933–1941 (1999)

    Article  Google Scholar 

  6. Burred, J.J., Röbel, A., Sikora, T.: Dynamic spectral envelope modeling for timbre analysis of musical instrument sounds. IEEE Transactions on Audio, Speech, and Language Processing 18(3), 663–674 (2010)

    Article  Google Scholar 

  7. Coello Coello, C.A., Lamont, G.L., van Veldhuizen, D.A.: Evolutionary Algorithms for Solving Multi-Objective Problems. Springer, Heidelberg (2007)

    MATH  Google Scholar 

  8. Eichhoff, M., Weihs, C.: Musical Instrument Recognition by High-Level Features. In: Proceedings of the 34th Annual Conference of the German Classification Society, pp. 373–381. Springer (2012)

    Google Scholar 

  9. Eronen, A.: Signal Processing Methods for Audio Classification and Music Content Analysis. PhD thesis, Tampere University of Technology, Departmrnt of Signal Processing (2009)

    Google Scholar 

  10. Fiebrink, R., Fujinaga, I.: Feature Selection Pitfalls and Music Classification. In: Proceedings of the 7th International Conference on Music Information Retrieval, ISMIR, pp. 340–341 (2006)

    Google Scholar 

  11. Goto, M., Hashiguchi, H., Nishimura, T., Oka, R.: RWC Music Database: Music Genre Database and Musical Instrument Sound Database. In: Proceedings of the 4th International Conference on Music Information Retrieval, ISMIR, pp. 229–230 (2003)

    Google Scholar 

  12. Guyon, I., Gunn, S., Nikravesh, M., Zadeh, L.: Feature Extraction, Foundations and Applications. Springer (2006)

    Google Scholar 

  13. Jelasity, M., Preuß, M., Eiben, A.E.: Operator Learning for a Problem Class in a Distributed Peer-to-Peer Environment. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN VII. LNCS, vol. 2439, pp. 172–183. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  14. Kitahara, T., Goto, M., Komatani, K., Ogata, T., Okuno, H.G.: Instrument identification in polyphonic music: Feature weighting to minimize influence of sound overlaps. EURASIP Journal on Advances in Signal Processing (2007)

    Google Scholar 

  15. Lartillot, O., Toiviainen, P.: MIR in Matlab (ii): a Toolbox for Musical Feature Extraction from Audio. In: Proceedings of the 8th International Conference on Music Information Retrieval, ISMIR, pp. 127–130 (2007)

    Google Scholar 

  16. Livshin, A., Rodet, X.: The significance of the non-harmonic “noise” versus the harmonic series for musical instrument recognition. In: Proceedings of the 7th International Conference on Music Information Retrieval, ISMIR, pp. 95–100 (2006)

    Google Scholar 

  17. Park, T.H.: Introduction to Digital Signal Processing: Computer Musically Speaking. World Scientific (2010)

    Google Scholar 

  18. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann (1993)

    Google Scholar 

  19. Vatolkin, I., Theimer, W., Botteck, M.: AMUSE (Advanced MUSic Explorer) - A Multitool Framework for Music Data Analysis. In: Proceedings of the 11th International Society for Music Information Retrieval Conference, ISMIR, pp. 33–38 (2010)

    Google Scholar 

  20. Vatolkin, I., Preuß, M., Rudolph, G.: Multi-Objective Feature Selection in Music Genre and Style Recognition Tasks. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO, pp. 411–418. ACM Press (2011)

    Google Scholar 

  21. Vatolkin, I., Preuß, M., Rudolph, G., Eichhoff, M., Weihs, C.: Multi-objective evolutionary feature selection for instrument recognition in polyphonic audio mixtures. Soft Computing - A Fusion of Foundations, Methodologies and Applications 16(12), 2027–2047 (2012)

    Google Scholar 

  22. Wu, J., Vincent, E., Raczyński, S.A., Nishimoto, T., Ono, N., Sagayama, S.: Polyphonic Pitch Estimation and Instrument Identification by Joint Modeling of Sustained and Attack Sounds. IEEE Journal of Selected Topics in Signal Processing 5(6), 1124–1132 (2011)

    Article  Google Scholar 

  23. Zitzler, E., Thiele, L.: Multiobjective Optimization Using Evolutionary Algorithms - A Comparative Case Study. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN V. LNCS, vol. 1498, pp. 292–301. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vatolkin, I., Nagathil, A., Theimer, W., Martin, R. (2013). Performance of Specific vs. Generic Feature Sets in Polyphonic Music Instrument Recognition. In: Purshouse, R.C., Fleming, P.J., Fonseca, C.M., Greco, S., Shaw, J. (eds) Evolutionary Multi-Criterion Optimization. EMO 2013. Lecture Notes in Computer Science, vol 7811. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37140-0_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37140-0_44

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37139-4

  • Online ISBN: 978-3-642-37140-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics