Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Data-Driven Statistical Framework for Post-Grasp Manipulation

  • Chapter
Experimental Robotics

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 88))

Abstract

Grasping an object is usually only an intermediate goal for a robotic manipulator. To finish the task, the robot needs to know where the object is in its hand and what action to execute. This paper presents a general statistical framework to address these problems. Given a novel object, the robot learns a statistical model of grasp state conditioned on sensor values. The robot also builds a statistical model of the requirements of the task in terms of grasp state accuracy. Both of these models are constructed by offline experiments. The online process then grasps objects and chooses actions to maximize likelihood of success. This paper describes the framework in detail, and demonstrates its effectiveness experimentally in placing, dropping, and insertion tasks. To construct statistical models, the robot performed over 8000 grasp trials, and over 1000 trials each of placing, dropping and insertion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Boots, B., Siddiqi, S.M., Gordon, G.J.: Closing the Learning-Planning Loop with Predictive State Representations. The International Journal of Robotics Research 30(7), 954–966 (2011)

    Article  Google Scholar 

  2. Botev, Z.I., Grotowski, J.F., Kroese, D.P.: Kernel density estimation via diffusion. The Annals of Statistics 38(5), 2916–2957 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brost, R.: Automatic Grasp Planning in the Presence of Uncertainty 3, 1575–1581 (1986)

    Google Scholar 

  4. Brost, R.C., Christiansen, A.D.: Probabilistic Analysis of Manipulation Tasks: A Conceptual Framework. The International Journal of Robotics Research 15(1), 1–23 (1996)

    Article  Google Scholar 

  5. Cassandra, A.R., Kaelbling, L.P., Littman, M.L.: Acting Optimally in Partial Observable Stochastic Domains. In: AAAI (1994)

    Google Scholar 

  6. Dogar, M., Srinivasa, S.S.: A Framework for Push-Grasping in Clutter. In: Robotics: Science and Systems (RSS) (2011)

    Google Scholar 

  7. Fu, J., Srinivasa, S., Pollard, N., Nabbe, B.: Planar batting under shape, pose, and impact uncertainty. In: IEEE International Conference on Robotics and Automation, ICRA (2007)

    Google Scholar 

  8. Goldberg, K., Mason, M.T.: Bayesian grasping. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 1264–1269 (1990)

    Google Scholar 

  9. Goldfeder, C., Allen, P.K.: Data-driven grasping. Autonomous Robots 31(1), 1–20 (2011)

    Article  Google Scholar 

  10. Hsiao, K., Kaelbling, L., Lozano-Pérez, T.: Robust grasping under object pose uncertainty. Autonomous Robots 31(2), 253–268 (2011)

    Article  Google Scholar 

  11. Jiang, Y., Lim, M., Zheng, C., Saxena, A.: Learning to place new objects in a scene. The International Journal of Robotics Research (2012)

    Google Scholar 

  12. Kang, D., Goldberg, K.: Sorting parts by random grasping. IEEE Transactions on Robotics and Automation 11(1), 146–152 (1995)

    Article  Google Scholar 

  13. Lavalle, S.M., Hutchinson, S.A.: Evaluating Motion Strategies under Nondeterministic or Probabilistic Uncertainties in Sensing and Control. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 3034–3039 (April 1996)

    Google Scholar 

  14. Mason, M.T., Rodriguez, A., Srinivasa, S.S., Vazquez, A.S.: Autonomous Manipulation with a General-Purpose Simple Hand. The International Journal of Robotics Research 31(5), 688–703 (2012)

    Article  Google Scholar 

  15. Morales, A., Chinellato, E., Fagg, A.H., del Pobil, A.P.: Using Experience for Assessing Grasp Reliability. International Journal of Humanoid Robotics 1(4), 671–691 (2004)

    Article  Google Scholar 

  16. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. MIT Press (2006)

    Google Scholar 

  17. Rodriguez, A., Mason, M.T., Srinivasa, S.S.: Manipulation Capabilities with Simple Hands. In: International Symposium on Experimental Robotics, ISER (2010)

    Google Scholar 

  18. Rodriguez, A., Mason, M.T., Srinivasa, S.S., Bernstein, M., Zirbel, A.: Abort and Retry in Grasping. In: IEEE International Conference on Intelligent Robots and Systems, IROS (2011)

    Google Scholar 

  19. Stulp, F., Theodorou, E., Buchli, J., Schaal, S.: Learning to Grasp under Uncertainty. In: IEEE International Conference on Robotics and Automation, ICRA (2011)

    Google Scholar 

  20. Wingate, D.: Exponential family predictive representations of state. Ph.D. thesis, University of Michigan (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Paolini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Paolini, R., Rodriguez, A., Srinivasa, S.S., Mason, M.T. (2013). A Data-Driven Statistical Framework for Post-Grasp Manipulation. In: Desai, J., Dudek, G., Khatib, O., Kumar, V. (eds) Experimental Robotics. Springer Tracts in Advanced Robotics, vol 88. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00065-7_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-00065-7_29

  • Publisher Name: Springer, Heidelberg

  • Print ISBN: 978-3-319-00064-0

  • Online ISBN: 978-3-319-00065-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics