Abstract
We propose a tool for automatic search for differential trails in ARX ciphers. By introducing the concept of a partial difference distribution table (pDDT) we extend Matsui’s algorithm, originally proposed for DES-like ciphers, to the class of ARX ciphers. To the best of our knowledge this is the first application of Matsui’s algorithm to ciphers that do not have S-boxes. The tool is applied to the block ciphers TEA, XTEA, SPECK and RAIDEN. For RAIDEN we find an iterative characteristic on all 32 rounds that can be used to break the full cipher using standard differential cryptanalysis. This is the first cryptanalysis of the cipher in a non-related key setting. Differential trails on 9, 10 and 13 rounds are found for SPECK32, SPECK48 and SPECK64 respectively. The 13 round trail covers half of the total number of rounds. These are the first public results on the security analysis of SPECK. For TEA multiple full (i.e. not truncated) differential trails are reported for the first time, while for XTEA we confirm the previous best known trail reported by Hong et al.,. We also show closed formulas for computing the exact additive differential probabilities of the left and right shift operations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aumasson, J.-P., Bernstein, D.J.: SipHash: a fast short-input PRF. IACR Cryptology ePrint Archive, 2012:351 (2012)
Aumasson, J.-P., Henzen, L., Meier, W., Phan, R.C.-W.: SHA-3 proposal BLAKE. Submission to the NIST SHA-3 Competition, Round 2 (2008)
Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.: The SIMON and SPECK Families of Lightweight Block Ciphers. Cryptology ePrint Archive, Report 2013/404 (2013), http://eprint.iacr.org/
Bernstein, D.J.: The Salsa20 Family of Stream Ciphers. In: Robshaw, M., Billet, O. (eds.) New Stream Cipher Designs. LNCS, vol. 4986, pp. 84–97. Springer, Heidelberg (2008)
Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like Cryptosystems. J. Cryptology 4(1), 3–72 (1991)
Bogdanov, A., Wang, M.: Zero Correlation Linear Cryptanalysis with Reduced Data Complexity. In: Canteaut [7], pp. 29–48
Canteaut, A. (ed.): FSE 2012. LNCS, vol. 7549. Springer, Heidelberg (2012)
Chen, J., Wang, M., Preneel, B.: Impossible Differential Cryptanalysis of the Lightweight Block Ciphers TEA, XTEA and HIGHT. In: Mitrokotsa, A., Vaudenay, S. (eds.) AFRICACRYPT 2012. LNCS, vol. 7374, pp. 117–137. Springer, Heidelberg (2012)
Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption Standard. Springer (2002)
Daemen, J., Rijmen, V.: Probability distributions of Correlation and Differentials in Block Ciphers. IACR Cryptology ePrint Archive, 2005:212 (2005)
Daum, M.: Cryptanalysis of Hash Functions of the MD4-Family. PhD thesis, Ruhr-Universität Bochum (2005)
De Cannière, C., Rechberger, C.: Finding SHA-1 Characteristics: General Results and Applications. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 1–20. Springer, Heidelberg (2006)
Ferguson, N., Lucks, S., Schneier, B., Whiting, D., Bellare, M., Kohno, T., Callas, J., Walker, J.: The Skein Hash Function Family. Submission to the NIST SHA-3 Competition, Round 2 (2009)
Fouque, P.-A., Leurent, G., Nguyen, P.Q.: Automatic Search of Differential Path in MD4. IACR Cryptology ePrint Archive, 2007:206 (2007)
Hong, D., Sung, J., Hong, S., Lim, J., Lee, S., Koo, B., Lee, C., Chang, D., Lee, J., Jeong, K., Kim, H., Kim, J., Chee, S.: Hight: A new block cipher suitable for low-resource device. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 46–59. Springer, Heidelberg (2006)
Hong, S., Hong, D., Ko, Y., Chang, D., Lee, W., Lee, S.: Differential Cryptanalysis of TEA and XTEA. In: Lim, J.-I., Lee, D.-H. (eds.) ICISC 2003. LNCS, vol. 2971, pp. 402–417. Springer, Heidelberg (2004)
Karroumi, M., Malherbe, C.: Related-key cryptanalysis of raiden. In: International Conference on Network and Service Security, N2S 2009, pp. 1–5 (2009)
Kelsey, J., Schneier, B., Wagner, D.: Related-key cryptanalysis of 3-WAY, Biham-DES, CAST, DES-X, NewDES, RC2, and TEA. In: Han, Y., Quing, S. (eds.) ICICS 1997. LNCS, vol. 1334, pp. 233–246. Springer, Heidelberg (1997)
Lai, X., Massey, J.L.: Markov ciphers and differential cryptanalysis. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 17–38. Springer, Heidelberg (1991)
Leurent, G.: Construction of Differential Characteristics in ARX Designs - Application to Skein. IACR Cryptology ePrint Archive, 2012:668 (2012)
Lipmaa, H., Moriai, S.: Efficient Algorithms for Computing Differential Properties of Addition. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355, pp. 336–350. Springer, Heidelberg (2002)
Lipmaa, H., Wallén, J., Dumas, P.: On the Additive Differential Probability of Exclusive-Or. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 317–331. Springer, Heidelberg (2004)
Matsui, M.: On Correlation between the Order of S-Boxes and the Strength of DES. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 366–375. Springer, Heidelberg (1995)
Matsui, M., Yamagishi, A.: A New Method for Known Plaintext Attack of FEAL Cipher. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 81–91. Springer, Heidelberg (1993)
Mendel, F., Nad, T., Schläffer, M.: Finding SHA-2 Characteristics: Searching through a Minefield of Contradictions. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 288–307. Springer, Heidelberg (2011)
Moon, D., Hwang, K., Lee, W.I., Lee, S.-J., Lim, J.-I.: Impossible Differential Cryptanalysis of Reduced Round XTEA and TEA. In: Daemen, J., Rijmen, V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 49–60. Springer, Heidelberg (2002)
Mouha, N., Velichkov, V., De Cannière, C., Preneel, B.: The Differential Analysis of S-Functions. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 36–56. Springer, Heidelberg (2011)
National Institute of Standards and Technology. Announcing Request for Candidate Algorithm Nominations for a New Cryptographic Hash Algorithm (SHA-3) Family. Federal Register 27(212), 62212–62220 (November 2007), http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf (October 17, 2008)
National Institute of Standards, U.S. Department of Commerce. FIPS 47: Data Encryption Standard (1977)
Needham, R.M., Wheeler, D.J.: TEA extensions. Computer Laboratory, Cambridge University, England (1997), http://www.movable-type.co.uk/scripts/xtea.pdf
Needham, R.M., Wheeler, D.J.: Correction to XTEA. Technical report, University of Cambridge (October 1998)
Polimón, J., Castro, J.C.H., Estévez-Tapiador, J.M., Ribagorda, A.: Automated design of a lightweight block cipher with Genetic Programming. KES Journal 12(1), 3–14 (2008)
Preneel, B. (ed.): FSE 1994. LNCS, vol. 1008. Springer, Heidelberg (1995)
Rivest, R.L.: The MD4 Message Digest Algorithm. In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 303–311. Springer, Heidelberg (1991)
Rivest, R.L.: The MD5 Message-Digest Algorithm. RFC 1321 (April 1992)
Rivest, R.L.: The RC5 Encryption Algorithm. In: Preneel [33], pp. 86–96
Shimizu, A., Miyaguchi, S.: Fast Data Encipherment Algorithm FEAL. In: Price, W.L., Chaum, D. (eds.) EUROCRYPT 1987. LNCS, vol. 304, pp. 267–278. Springer, Heidelberg (1988)
Velichkov, V., Mouha, N., De Cannière, C., Preneel, B.: The Additive Differential Probability of ARX. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 342–358. Springer, Heidelberg (2011)
Velichkov, V., Mouha, N., Preneel, C.D.B.: UNAF: A Special Set of Additive Differences with Application to the Differential Analysis of ARX. In: Canteaut, [7] pp. 287–305
Wheeler, D.J., Needham, R.M.: TEA, a Tiny Encryption Algorithm. In: Preneel [33], pp. 363–366
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Biryukov, A., Velichkov, V. (2014). Automatic Search for Differential Trails in ARX Ciphers. In: Benaloh, J. (eds) Topics in Cryptology – CT-RSA 2014. CT-RSA 2014. Lecture Notes in Computer Science, vol 8366. Springer, Cham. https://doi.org/10.1007/978-3-319-04852-9_12
Download citation
DOI: https://doi.org/10.1007/978-3-319-04852-9_12
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-04851-2
Online ISBN: 978-3-319-04852-9
eBook Packages: Computer ScienceComputer Science (R0)