Abstract
TEA, XTEA and HIGHT are lightweight block ciphers with 64-bit block sizes and 128-bit keys. The round functions of the three ciphers are based on the simple operations XOR, modular addition and shift/rotation. TEA and XTEA are Feistel ciphers with 64 rounds designed by Needham and Wheeler, where XTEA is a successor of TEA, which was proposed by the same authors as an enhanced version of TEA. HIGHT, which is designed by Hong et al., is a generalized Feistel cipher with 32 rounds. These block ciphers are simple and easy to implement but their diffusion is slow, which allows us to find some impossible properties.
This paper proposes a method to identify the impossible differentials for TEA and XTEA by using the weak diffusion, where the impossible differential comes from a bit contradiction. Our method finds a 14-round impossible differential of XTEA and a 13-round impossible differential of TEA, which result in impossible differential attacks on 23-round XTEA and 17-round TEA, respectively. These attacks significantly improve the previous impossible differential attacks on 14-round XTEA and 11-round TEA given by Moon et al. from FSE 2002. For HIGHT, we improve the 26-round impossible differential attack proposed by Özen et al.; an impossible differential attack on 27-round HIGHT that is slightly faster than the exhaustive search is also given.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of Skipjack Reduced to 31 Rounds Using Impossible Differentials. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 12–23. Springer, Heidelberg (1999)
Bogdanov, A., Rijmen, V.: Zero-Correlation Linear Cryptanalysis of Block Ciphers. IACR Cryptology ePrint Archive 2011, 123 (2011)
Bogdanov, A., Wang, M.: Zero Correlation Linear Cryptanalysis with Reduced Data Complexity. Pre-proceedings of FSE 2012 (2012)
Bouillaguet, C., Dunkelman, O., Leurent, G., Fouque, P.A.: Another Look at Complementation Properties. In: Hong, S., Iwata, T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 347–364. Springer, Heidelberg (2010)
Daum, M.: Cryptanalysis of Hash Functions of the MD4-Family. PhD thesis, http://www.cits.rub.de/imperia/md/content/magnus/idissmd4.pdf
Hong, D., Sung, J., Hong, S., Lim, J., Lee, S., Koo, B., Lee, C., Chang, D., Lee, J., Jeong, K., Kim, H., Kim, J., Chee, S.: HIGHT: A New Block Cipher Suitable for Low-Resource Device. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 46–59. Springer, Heidelberg (2006)
Hong, S., Hong, D., Ko, Y., Chang, D., Lee, W., Lee, S.: Differential Cryptanalysis of TEA and XTEA. In: Lim, J.-I., Lee, D.-H. (eds.) ICISC 2003. LNCS, vol. 2971, pp. 402–417. Springer, Heidelberg (2004)
International Standardization of Organization (ISO): International Standard- ISO/IEC 18033-3, Information technology-Security techniques-Encryption algorithms -Part 3: Block ciphers (2010)
Kelsey, J., Schneier, B., Wagner, D.: Key-Schedule Cryptanalysis of IDEA, G-DES, GOST, SAFER, and Triple-DES. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 237–251. Springer, Heidelberg (1996)
Kelsey, J., Schneier, B., Wagner, D.: Related-key Cryptanalysis of 3-WAY, Biham-DES, CAST, DES-X, NewDES, RC2, and TEA. In: Han, Y., Okamoto, T., Qing, S. (eds.) ICICS 1997. LNCS, vol. 1334, pp. 233–246. Springer, Heidelberg (1997)
Klimov, A., Shamir, A.: A New Class of Invertible Mappings. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 470–483. Springer, Heidelberg (2003)
Knudsen, L.: DEAL - A 128-bit Block Cipher. In: NIST AES Proposal (1998)
Ko, Y., Hong, S., Lee, W., Lee, S., Kang, J.S.: Related Key Differential Attacks on 27 Rounds of XTEA and Full-Round GOST. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 299–316. Springer, Heidelberg (2004)
Koo, B., Hong, D., Kwon, D.: Related-Key Attack on the Full HIGHT. In: Rhee, K.-H., Nyang, D. (eds.) ICISC 2010. LNCS, vol. 6829, pp. 49–67. Springer, Heidelberg (2011)
Lee, E., Hong, D., Chang, D., Hong, S., Lim, J.: A Weak Key Class of XTEA for a Related-Key Rectangle Attack. In: Nguyên, P.Q. (ed.) VIETCRYPT 2006. LNCS, vol. 4341, pp. 286–297. Springer, Heidelberg (2006)
Lu, J.: Cryptanalysis of Reduced Versions of the HIGHT Block Cipher from CHES 2006. In: Nam, K.-H., Rhee, G. (eds.) ICISC 2007. LNCS, vol. 4817, pp. 11–26. Springer, Heidelberg (2007)
Lu, J.: Related-key Rectangle Attack on 36 Rounds of the XTEA Block Cipher. Int. J. Inf. Sec. 8(1), 1–11 (2009)
Moon, D., Hwang, K., Lee, W., Lee, S., Lim, J.: Impossible Differential Cryptanalysis of Reduced Round XTEA and TEA. In: Daemen, J., Rijmen, V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 49–60. Springer, Heidelberg (2002)
Needham, R.M., Wheeler, D.J.: TEA Extensions. Tech. rep., University of Cambridge (October 1997)
Özen, O., Varıcı, K., Tezcan, C., Kocair, Ç.: Lightweight Block Ciphers Revisited: Cryptanalysis of Reduced Round PRESENT and HIGHT. In: Boyd, C., Nieto, J.G. (eds.) ACISP 2009. LNCS, vol. 5594, pp. 90–107. Springer, Heidelberg (2009)
Sekar, G., Mouha, N., Velichkov, V., Preneel, B.: Meet-in-the-Middle Attacks on Reduced-Round XTEA. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 250–267. Springer, Heidelberg (2011)
Wheeler, D.J., Needham, R.M.: TEA, a Tiny Encryption Algorithm. In: Preneel, B. (ed.) FSE 1994. LNCS, vol. 1008, pp. 363–366. Springer, Heidelberg (1995)
Zhang, P., Sun, B., Li, C.: Saturation Attack on the Block Cipher HIGHT. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS 2009. LNCS, vol. 5888, pp. 76–86. Springer, Heidelberg (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Chen, J., Wang, M., Preneel, B. (2012). Impossible Differential Cryptanalysis of the Lightweight Block Ciphers TEA, XTEA and HIGHT. In: Mitrokotsa, A., Vaudenay, S. (eds) Progress in Cryptology - AFRICACRYPT 2012. AFRICACRYPT 2012. Lecture Notes in Computer Science, vol 7374. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31410-0_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-31410-0_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-31409-4
Online ISBN: 978-3-642-31410-0
eBook Packages: Computer ScienceComputer Science (R0)