Nothing Special   »   [go: up one dir, main page]

Skip to main content

CROCODILE: Causality Aids RObustness via COntrastive DIsentangled LEarning

  • Conference paper
  • First Online:
Uncertainty for Safe Utilization of Machine Learning in Medical Imaging (UNSURE 2024)

Abstract

Deep learning image classifiers often struggle with domain shift, leading to significant performance degradation in real-world applications. In this paper, we introduce our CROCODILE framework, showing how tools from causality can foster a model’s robustness to domain shift via feature disentanglement, contrastive learning losses, and the injection of prior knowledge. This way, the model relies less on spurious correlations, learns the mechanism bringing from images to prediction better, and outperforms baselines on out-of-distribution (OOD) data. We apply our method to multi-label lung disease classification from chest X-rays (CXRs), utilizing over 750000 images from four datasets. Our bias-mitigation method improves domain generalization, broadening the applicability and reliability of deep learning models for a safer medical image analysis. Find our code at: https://github.com/gianlucarloni/crocodile.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bercean, B., Buburuzan, A., Birhala, A., Avramescu, C., Tenescu, A., Marcu, M.: Breaking down covariate shift on pneumothorax chest X-ray classification. In: Sudre, C.H., Baumgartner, C.F., Dalca, A., Mehta, R., Qin, C., Wells, W.M. (eds.) Uncertainty for Safe Utilization of Machine Learning in Medical Imaging: 5th International Workshop, UNSURE 2023, Held in Conjunction with MICCAI 2023, Vancouver, BC, Canada, October 12, 2023, Proceedings, pp. 157–166. Springer Nature Switzerland, Cham (2023). https://doi.org/10.1007/978-3-031-44336-7_16

    Chapter  Google Scholar 

  2. Bustos, A., Pertusa, A., Salinas, J.M., De La Iglesia-Vaya, M.: PadChest: a large chest X-ray image dataset with multi-label annotated reports. Med. Image Anal. 66, 101797 (2020)

    Article  Google Scholar 

  3. Cao, C., Zhang, Y.: Learning to compare relation: semantic alignment for few-shot learning. IEEE Trans. Image Process. 31, 1462–1474 (2022)

    Article  Google Scholar 

  4. Carloni, G., Colantonio, S.: Exploiting causality signals in medical images: a pilot study with empirical results. Expert Syst. Appl., 123433 (2024)

    Google Scholar 

  5. Carloni, G., Pachetti, E., Colantonio, S.: Causality-driven one-shot learning for prostate cancer grading from MRI. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2616–2624 (2023)

    Google Scholar 

  6. Castro, D.C., Walker, I., Glocker, B.: Causality matters in medical imaging. Nat. Commun. 11(1), 3673 (2020)

    Article  Google Scholar 

  7. Cohen, J.P., Hashir, M., Brooks, R., Bertrand, H.: On the limits of cross-domain generalization in automated X-ray prediction. In: Medical Imaging with Deep Learning. pp. 136–155. PMLR (2020)

    Google Scholar 

  8. Hartley, J., Sanchez, P.P., Haider, F., Tsaftaris, S.A.: Neural networks memorise personal information from one sample. Sci. Rep. 13(1), 21366 (2023)

    Article  Google Scholar 

  9. Irvin, J., et al.: CheXpert: a large chest radiograph dataset with uncertainty labels and expert comparison. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 590–597 (2019)

    Google Scholar 

  10. Johnson, A.E., et al.: MIMIC-CXR-JPG, a large publicly available database of labeled chest radiographs. arXiv preprint arXiv:1901.07042 (2019)

  11. Li, Z., et al.: Domain generalization for mammography detection via multi-style and multi-view contrastive learning. In: de Bruijne, M., et al. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2021: 24th International Conference, Strasbourg, France, September 27 – October 1, 2021, Proceedings, Part VII, pp. 98–108. Springer International Publishing, Cham (2021). https://doi.org/10.1007/978-3-030-87234-2_10

    Chapter  Google Scholar 

  12. Nie, W., Zhang, C., Song, D., Bai, Y., Xie, K., Liu, A.-A.: Chest X-ray image classification: a causal perspective. In: Greenspan, H., et al. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2023: 26th International Conference, Vancouver, BC, Canada, October 8–12, 2023, Proceedings, Part III, pp. 25–35. Springer Nature Switzerland, Cham (2023). https://doi.org/10.1007/978-3-031-43898-1_3

    Chapter  Google Scholar 

  13. Ouyang, C., et al.: Causality-inspired single-source domain generalization for medical image segmentation. IEEE Trans. Med. Imaging 42(4), 1095–1106 (2022)

    Article  Google Scholar 

  14. Pan, X., Ge, C., Lu, R., Song, S., Chen, G., Huang, Z., Huang, G.: On the integration of self-attention and convolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 815–825 (2022)

    Google Scholar 

  15. Pearl, J.: Causal inference. Causality: objectives and assessment, pp. 39–58 (2010)

    Google Scholar 

  16. Pearl, J.: Interpretation and identification of causal mediation. Psychol. Methods 19(4), 459 (2014)

    Article  MathSciNet  Google Scholar 

  17. Pham, H.H., Le, T.T., Tran, D.Q., Ngo, D.T., Nguyen, H.Q.: Interpreting chest x-rays via CNNs that exploit hierarchical disease dependencies and uncertainty labels. Neurocomputing 437, 186–194 (2021)

    Article  Google Scholar 

  18. Pooch, E.H., Ballester, P., Barros, R.C.: Can we trust deep learning based diagnosis? The impact of domain shift in chest radiograph classification. In: Thoracic Image Analysis: Second International Workshop, TIA 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 8, 2020, Proceedings 2, pp. 74–83. Springer (2020). https://doi.org/10.1007/978-3-030-62469-9_7

  19. Rajaraman, S., Antani, S.: Training deep learning algorithms with weakly labeled pneumonia chest X-ray data for Covid-19 detection. MedRxiv (2020)

    Google Scholar 

  20. Sanchez, P., Voisey, J.P., Xia, T., Watson, H.I., O’Neil, A.Q., Tsaftaris, S.A.: Causal machine learning for healthcare and precision medicine. Royal Soc. Open Sci. 9(8), 220638 (2022)

    Article  Google Scholar 

  21. Sui, Y., Wang, X., Wu, J., Lin, M., He, X., Chua, T.S.: Causal attention for interpretable and generalizable graph classification. In: Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 1696–1705 (2022)

    Google Scholar 

  22. Sung, F., Yang, Y., Zhang, L., Xiang, T., Torr, P.H., Hospedales, T.M.: Learning to compare: Relation network for few-shot learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1199–1208 (2018)

    Google Scholar 

  23. Teney, D., Lin, Y., Oh, S.J., Abbasnejad, E.: ID and OOD performance are sometimes inversely correlated on real-world datasets. In: Advances in Neural Information Processing Systems, vol. 36 (2024)

    Google Scholar 

  24. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  25. Wang, J., et al.: Generalizing to unseen domains: a survey on domain generalization. IEEE Trans. Knowl. Data Eng. 35(8), 8052–8072 (2022)

    Google Scholar 

  26. Wang, T., Zhou, C., Sun, Q., Zhang, H.: Causal attention for unbiased visual recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3091–3100 (2021)

    Google Scholar 

  27. Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., Summers, R.M.: ChestX-ray8: Hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2097–2106 (2017)

    Google Scholar 

  28. Zhang, J., et al.: Learning towards synchronous network memorizability and generalizability for continual segmentation across multiple sites. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022: 25th International Conference, Singapore, September 18–22, 2022, Proceedings, Part V, pp. 380–390. Springer Nature Switzerland, Cham (2022). https://doi.org/10.1007/978-3-031-16443-9_37

    Chapter  Google Scholar 

  29. Zunaed, M., Haque, M.A., Hasan, T.: Learning to generalize towards unseen domains via a content-aware style invariant model for disease detection from chest X-rays. IEEE J. Biomedical Health Inform. 28(6), 3626–3636 (2024). https://doi.org/10.1109/JBHI.2024.3372999

    Article  Google Scholar 

Download references

Acknowledgments

This study has received funding from the European Union’s Horizon 2020 program under grant No 952159 (ProCAncer-I) and the Tuscany Project PAR-FAS PRAMA. The funders had no role in the design of the study, the collection, analysis, and interpretation of data, or writing the manuscript. We acknowledge the CINECA award under the ISCRA initiative for the availability of high-performance computing resources and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluca Carloni .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare.

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Carloni, G., Tsaftaris, S.A., Colantonio, S. (2025). CROCODILE: Causality Aids RObustness via COntrastive DIsentangled LEarning. In: Sudre, C.H., Mehta, R., Ouyang, C., Qin, C., Rakic, M., Wells, W.M. (eds) Uncertainty for Safe Utilization of Machine Learning in Medical Imaging. UNSURE 2024. Lecture Notes in Computer Science, vol 15167. Springer, Cham. https://doi.org/10.1007/978-3-031-73158-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73158-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73157-0

  • Online ISBN: 978-3-031-73158-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics