Nothing Special   »   [go: up one dir, main page]

Skip to main content

Breaking Down Covariate Shift on Pneumothorax Chest X-Ray Classification

  • Conference paper
  • First Online:
Uncertainty for Safe Utilization of Machine Learning in Medical Imaging (UNSURE 2023)

Abstract

Domain shift poses significant problems to computer-aided diagnostic (CAD) systems when deployed in clinical scenarios. There’s still no definite fix nor an in-depth understanding of the exact factors driving domain shifts in medical X-rays. Here, we conduct an exploratory study on three covariate shift factors in X-ray classification by controlling for different variables. This is possible by leveraging a homogenously-relabelled mix of public and private X-ray data spanning 23 medical institutions over four continents and 17 classes of pathologies. We show that the acquisition parameter, device manufacturer and geographical shifts degrade out-of-distribution (OOD) F1 by 6%, 3.2% and 3.3%, respectively. Pneumothorax was found to be the most impaired pathology, suffering a mean F1 generalisation gap of 13.3%, despite being one of the most clinically-consequential radiological findings. To this end, we introduced LISA-topK, a multi-label adaptation of Learning Invariant Predictors with Selective Augmentation (LISA), that we showed to narrow down the OOD gap, surpassing other methods consistently. These pragmatic results shed light on some of the elements of OOD generalisation in X-ray classification, which are essential to researching, understanding and deploying CAD systems. Code is available at https://github.com/RayscapeAI/LISA-topK

B. Bercean and A. Buburuzan—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Shifts challenge 2022 - grand challenge. www.shifts.grand-challenge.org/. Accessed 10 Mar 2023

  2. Allen, B., Agarwal, S., Coombs, L., Wald, C., Dreyer, K.: 2020 ACR data science institute artificial intelligence survey. J. Am. Coll. Radiol. 18(8), 1153–1159 (2021)

    Article  Google Scholar 

  3. Aubreville, M., Bertram, C., Breininger, K., Jabari, S., Stathonikos, N., Veta, M.: Mitosis domain generalization challenge 2022 (2022). https://doi.org/10.5281/zenodo.6362337

  4. Bandi, P., et al.: From detection of individual metastases to classification of lymph node status at the patient level: the CAMELYON17 challenge. IEEE Trans. Med. Imaging 38(2), 550–560 (2018)

    Article  Google Scholar 

  5. European Society of Radiology (ESR). Current practical experience with artificial intelligence in clinical radiology: a survey of the European Society of Radiology. Insights Imaging 13, 107 (2022). https://doi.org/10.1186/s13244-022-01247-y

  6. Bustos, A., Pertusa, A., Salinas, J.M., de la Iglesia-Vayá, M.: PadChest: a large chest X-ray image dataset with multi-label annotated reports. Med. Image Anal. 66, 101797 (2020)

    Article  Google Scholar 

  7. Cohen, J.P., Hashir, M., Brooks, R., Bertrand, H.: On the limits of cross-domain generalization in automated X-ray prediction. In: Medical Imaging with Deep Learning, pp. 136–155. PMLR (2020)

    Google Scholar 

  8. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  9. Gichoya, J.W., et al.: AI recognition of patient race in medical imaging: a modelling study. Lancet Digital Health 4(6), e406–e414 (2022)

    Article  Google Scholar 

  10. Gulrajani, I., Lopez-Paz, D.: In search of lost domain generalization. In: International Conference on Learning Representations

    Google Scholar 

  11. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  12. Irvin, J., et al.: CheXpert: a large chest radiograph dataset with uncertainty labels and expert comparison. In: Thirty-Third AAAI Conference on Artificial Intelligence (2019)

    Google Scholar 

  13. Johnson, A.E., et al.: Mimic-CXR, a de-identified publicly available database of chest radiographs with free-text reports. Sci. Data 6(1), 317 (2019)

    Google Scholar 

  14. Kilim, O., Olar, A., Joó, T., Palicz, T., Pollner, P., Csabai, I.: Physical imaging parameter variation drives domain shift. Sci. Rep. 12(1), 21302 (2022)

    Article  Google Scholar 

  15. Koh, P.W., et al.: WILDS: a benchmark of in-the-wild distribution shifts. In: International Conference on Machine Learning, pp. 5637–5664. PMLR (2021)

    Google Scholar 

  16. Li, D., Yang, Y., Song, Y.Z., Hospedales, T.M.: Deeper, broader and artier domain generalization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5542–5550 (2017)

    Google Scholar 

  17. McHugh, M.L.: Interrater reliability: the kappa statistic. Biochemia Med. 22(3), 276–282 (2012)

    Article  MathSciNet  Google Scholar 

  18. Pooch, E.H.P., Ballester, P., Barros, R.C.: Can we trust deep learning based diagnosis? The impact of domain shift in chest radiograph classification. In: Petersen, J., et al. (eds.) TIA 2020. LNCS, vol. 12502, pp. 74–83. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62469-9_7

    Chapter  Google Scholar 

  19. Reis, E.P., et al.: Brax, Brazilian labeled chest X-ray dataset. Sci. Data 9(1), 487 (2022)

    Article  Google Scholar 

  20. Wang, H., Xia, Y.: Domain-ensemble learning with cross-domain mixup for thoracic disease classification in unseen domains. Biomed. Sig. Process. Control 81, 104488 (2023)

    Article  Google Scholar 

  21. Wang, J., et al.: Generalizing to unseen domains: a survey on domain generalization. IEEE Trans. Knowl. Data Eng. 35(8), 8052–8072 (2022)

    Google Scholar 

  22. Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., Summers, R.M.: ChestX-ray8: hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2097–2106 (2017)

    Google Scholar 

  23. Wenkel, S.: Concatenated MNIST (CMNIST). making 784 pixels challenging again. (2019). www.simonwenkel.com/publications/articles/pdf/20190924_CMNIST.pdf

  24. Yao, H., et al.: Improving out-of-distribution robustness via selective augmentation. In: International Conference on Machine Learning, pp. 25407–25437. PMLR (2022)

    Google Scholar 

  25. Zhang, H., Dullerud, N., Seyyed-Kalantari, L., Morris, Q., Joshi, S., Ghassemi, M.: An empirical framework for domain generalization in clinical settings. In: Proceedings of the Conference on Health, Inference, and Learning, pp. 279–290 (2021)

    Google Scholar 

  26. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: Beyond empirical risk minimization. arXiv preprint arXiv:1710.09412 (2017)

  27. Zhou, K., Liu, Z., Qiao, Y., Xiang, T., Loy, C.C.: Domain generalization: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 45(4), 4396–4415 (2022)

    Google Scholar 

  28. Zunaed, M., Haque, M., Hasan, T., et al.: Learning to generalize towards unseen domains via a content-aware style invariant framework for disease detection from chest x-rays. arXiv preprint arXiv:2302.13991 (2023)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bogdan Bercean .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 161 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bercean, B., Buburuzan, A., Birhala, A., Avramescu, C., Tenescu, A., Marcu, M. (2023). Breaking Down Covariate Shift on Pneumothorax Chest X-Ray Classification. In: Sudre, C.H., Baumgartner, C.F., Dalca, A., Mehta, R., Qin, C., Wells, W.M. (eds) Uncertainty for Safe Utilization of Machine Learning in Medical Imaging. UNSURE 2023. Lecture Notes in Computer Science, vol 14291. Springer, Cham. https://doi.org/10.1007/978-3-031-44336-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44336-7_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44335-0

  • Online ISBN: 978-3-031-44336-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics