Nothing Special   »   [go: up one dir, main page]

Skip to main content

Norma: A Noise Robust Memory-Augmented Framework for Whole Slide Image Classification

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Abstract

In recent years, the Whole Slide Image (WSI) classification task has achieved great advancement due to the success of Multiple Instance Learning (MIL). However, the MIL-based studies usually consider instances within each bag as unordered, potentially resulting in the missing of local and global contextual information. To overcome this limitation, we propose a Noise Robust Memory-Augmented (Norma) framework for addressing the WSI classification task using a sequential approach. Norma serializes a WSI into a long sequence and adopts the Vision Transformer (ViT) to encode the local and global context information of the WSIs. Instead of processing long sequences at once, Norma splits the long sequence into multiple segments and sequentially trains these segments, with each segment being cached for future reuse. In addition, considering that segment-level labels are inherited from slide-level labels, which may introduce noise during training, Norma further introduces a cyclic method to reduce label noise. We achieve state-of-the-art performance on the CAMELYON-16, TCGA-BRAC and TCGA-LUNG datasets compared to recent studies. The code is available at https://github.com/weiaicunzai/Norma.

Y. Bai and B. Zhang—Contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bai, Y., et al.: A scalable graph-based framework for multi-organ histology image classification. IEEE J. Biomed. Health Inform. 26(11), 5506–5517 (2022)

    Article  Google Scholar 

  2. Bai, Y., et al.: CoCa: a connectivity-aware cascade framework for histology gland segmentation. In: Proceedings of the 31st ACM International Conference on Multimedia, pp. 1598–1606 (2023)

    Google Scholar 

  3. Campanella, G., et al.: Clinical-grade computational pathology using weakly supervised deep learning on whole slide images. Nat. Med. 25(8), 1301–1309 (2019)

    Google Scholar 

  4. Chan, T.H., Cendra, F.J., Ma, L., Yin, G., Yu, L.: Histopathology whole slide image analysis with heterogeneous graph representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15661–15670 (2023)

    Google Scholar 

  5. Chen, R.J., et al.: Scaling vision transformers to gigapixel images via hierarchical self-supervised learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16144–16155 (2022)

    Google Scholar 

  6. Chu, X., Tian, Z., Zhang, B., Wang, X., Shen, C.: Conditional positional encodings for vision transformers. In: International Conference on Learning Representations (2023)

    Google Scholar 

  7. Dai, Z., Yang, Z., Yang, Y., Carbonell, J.G., Le, Q., Salakhutdinov, R.: Transformer-XL: attentive language models beyond a fixed-length context. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 2978–2988 (2019)

    Google Scholar 

  8. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. In: International Conference on Learning Representations (2020)

    Google Scholar 

  9. Guan, Y., et al.: Node-aligned graph convolutional network for whole-slide image representation and classification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18813–18823 (2022)

    Google Scholar 

  10. Han, J., Luo, P., Wang, X.: Deep self-learning from noisy labels. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5138–5147 (2019)

    Google Scholar 

  11. Hashimoto, N., et al.: Multi-scale domain-adversarial multiple-instance CNN for cancer subtype classification with unannotated histopathological images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3852–3861 (2020)

    Google Scholar 

  12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  13. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  14. Huang, Z., Zhang, J., Shan, H.: Twin contrastive learning with noisy labels. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11661–11670 (2023)

    Google Scholar 

  15. Ilse, M., Tomczak, J., Welling, M.: Attention-based deep multiple instance learning. In: International Conference on Machine Learning, pp. 2127–2136 (2018)

    Google Scholar 

  16. Islam, M.A., Jia, S., Bruce, N.D.: How much position information do convolutional neural networks encode? In: International Conference on Learning Representations (2020)

    Google Scholar 

  17. Khosla, P., et al.: Supervised contrastive learning. In: Advances in Neural Information Processing Systems, vol. 33, pp. 18661–18673 (2020)

    Google Scholar 

  18. Li, B., Li, Y., Eliceiri, K.W.: Dual-stream multiple instance learning network for whole slide image classification with self-supervised contrastive learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14318–14328 (2021)

    Google Scholar 

  19. Li, H., et al.: Task-specific fine-tuning via variational information bottleneck for weakly-supervised pathology whole slide image classification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7454–7463 (2023)

    Google Scholar 

  20. Li, J., Xiong, C., Hoi, S.C.: Learning from noisy data with robust representation learning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9485–9494 (2021)

    Google Scholar 

  21. Li, Y., Ping, W.: Cancer metastasis detection with neural conditional random field. arXiv preprint arXiv:1806.07064 (2018)

  22. Lin, T., Yu, Z., Hu, H., Xu, Y., Chen, C.W.: Interventional bag multi-instance learning on whole-slide pathological images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 19830–19839 (2023)

    Google Scholar 

  23. Lu, M.Y., Williamson, D.F., Chen, T.Y., Chen, R.J., Barbieri, M., Mahmood, F.: Data-efficient and weakly supervised computational pathology on whole-slide images. Nat. Biomed. Eng. 5(6), 555–570 (2021)

    Article  Google Scholar 

  24. Ortego, D., Arazo, E., Albert, P., O’Connor, N.E., McGuinness, K.: Multi-objective interpolation training for robustness to label noise. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6606–6615 (2021)

    Google Scholar 

  25. Qin, W., Xu, R., Jiang, S., Jiang, T., Luo, L.: PathTR: context-aware memory transformer for tumor localization in gigapixel pathology images. In: Wang, L., Gall, J., Chin, T.J., Sato, I., Chellappa, R. (eds.) ACCV 2022. LNCS, vol. 13846, pp. 3603–3619. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-26351-4_8

    Chapter  Google Scholar 

  26. Qu, L., Wang, M., Song, Z., et al.: Bi-directional weakly supervised knowledge distillation for whole slide image classification. In: Advances in Neural Information Processing Systems, vol. 35, pp. 15368–15381 (2022)

    Google Scholar 

  27. Qu, L., et al.: Boosting whole slide image classification from the perspectives of distribution, correlation and magnification. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 21463–21473 (2023)

    Google Scholar 

  28. Rae, J.W., Potapenko, A., Jayakumar, S.M., Hillier, C., Lillicrap, T.P.: Compressive transformers for long-range sequence modelling. In: International Conference on Learning Representations (2019)

    Google Scholar 

  29. Reisenbüchler, D., Wagner, S.J., Boxberg, M., Peng, T.: Local attention graph-based transformer for multi-target genetic alteration prediction. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13432, pp. 377–386. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16434-7_37

    Chapter  Google Scholar 

  30. Shao, W., Wang, T., Huang, Z., Han, Z., Zhang, J., Huang, K.: Weakly supervised deep ordinal cox model for survival prediction from whole-slide pathological images. IEEE Trans. Med. Imaging 40(12), 3739–3747 (2021)

    Article  Google Scholar 

  31. Shao, Z., et al.: TransMIL: transformer based correlated multiple instance learning for whole slide image classification. In: Advances in Neural Information Processing Systems, vol. 34, pp. 2136–2147 (2021)

    Google Scholar 

  32. Shaw, P., Uszkoreit, J., Vaswani, A.: Self-attention with relative position representations. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 464–468 (2018)

    Google Scholar 

  33. Shen, Y., Ke, J.: A deformable CRF model for histopathology whole-slide image classification. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12265, pp. 500–508. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59722-1_48

    Chapter  Google Scholar 

  34. Su, Y., Bai, Y., Zhang, B., Zhang, Z., Wang, W.: HAT-Net: a hierarchical transformer graph neural network for grading of colorectal cancer histology images. In: The British Machine Vision Conference, p. 412 (2021)

    Google Scholar 

  35. Tang, W., Huang, S., Zhang, X., Zhou, F., Zhang, Y., Liu, B.: Multiple instance learning framework with masked hard instance mining for whole slide image classification. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4078–4087 (2023)

    Google Scholar 

  36. Tang, W., Zhou, F., Huang, S., Zhu, X., Zhang, Y., Liu, B.: Feature re-embedding: towards foundation model-level performance in computational pathology. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11343–11352 (2024)

    Google Scholar 

  37. Tellez, D., Litjens, G., Van der Laak, J., Ciompi, F.: Neural image compression for gigapixel histopathology image analysis. IEEE Trans. Pattern Anal. Mach. Intell. 43(2), 567–578 (2019)

    Article  Google Scholar 

  38. Thandiackal, K., et al.: Differentiable zooming for multiple instance learning on whole-slide images. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13681, pp. 699–715. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19803-8_41

    Chapter  Google Scholar 

  39. Wang, X., Yan, Y., Tang, P., Bai, X., Liu, W.: Revisiting multiple instance neural networks. Pattern Recogn. 74, 15–24 (2018)

    Article  Google Scholar 

  40. Wang, X., et al.: SCL-WC: cross-slide contrastive learning for weakly-supervised whole-slide image classification. In: Advances in Neural Information Processing Systems, vol. 35, pp. 18009–18021 (2022)

    Google Scholar 

  41. Wang, X., et al.: TransPath: transformer-based self-supervised learning for histopathological image classification. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12908, pp. 186–195. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87237-3_18

    Chapter  Google Scholar 

  42. Wu, C.Y., et al.: MeMViT: memory-augmented multiscale vision transformer for efficient long-term video recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13587–13597 (2022)

    Google Scholar 

  43. Xiong, Y., et al.: Nyströmformer: a nyström-based algorithm for approximating self-attention. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35(16), pp. 14138–14148 (2021)

    Google Scholar 

  44. Xu, Y., et al.: Large scale tissue histopathology image classification, segmentation, and visualization via deep convolutional activation features. BMC Bioinformatics 18, 1–17 (2017)

    Article  Google Scholar 

  45. Yan, R., et al.: Breast cancer histopathological image classification using a hybrid deep neural network. Methods 173, 52–60 (2020)

    Article  Google Scholar 

  46. Zhang, B., et al.: LSRML: a latent space regularization based meta-learning framework for MR image segmentation. Pattern Recogn. 130, 108821 (2022)

    Article  Google Scholar 

  47. Zhang, B., et al.: Factorized omnidirectional representation based vision GNN for anisotropic 3D multimodal MR image segmentation. In: Proceedings of the 31st ACM International Conference on Multimedia, pp. 1607–1615 (2023)

    Google Scholar 

  48. Zhang, H., et al.: DTFD-MIL: double-tier feature distillation multiple instance learning for histopathology whole slide image classification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18802–18812 (2022)

    Google Scholar 

  49. Zhang, M., Lucas, J., Ba, J., Hinton, G.E.: Lookahead optimizer: K steps forward, 1 step back. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  50. Zhang, Y., et al.: AutoSight: distributed edge caching in short video network. IEEE Netw. 34(3), 194–199 (2020)

    Article  Google Scholar 

  51. Zheng, Y., et al.: A graph-transformer for whole slide image classification. IEEE Trans. Med. Imaging 41(11), 3003–3015 (2022)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China (No. 62072047, 61972046, 61802022, and 61802027), the Beijing Natural Science Foundation-Haidian Original Innovation Joint Fund Project (No. L182034), the Fundamental Research Funds for the Central Universities (No. 2019XD-A12), the Beijing Nova Program (NO. 20220484063), and the BUPT Excellent Ph.D. Students Foundation (No. CX2021136).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zheng Zhang , Xiangyang Gong or Wendong Wang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 4519 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bai, Y. et al. (2025). Norma: A Noise Robust Memory-Augmented Framework for Whole Slide Image Classification. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15109. Springer, Cham. https://doi.org/10.1007/978-3-031-72983-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72983-6_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72982-9

  • Online ISBN: 978-3-031-72983-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics