Nothing Special   »   [go: up one dir, main page]

Skip to main content

Clustering-Based Multi-instance Learning Network for Whole Slide Image Classification

  • Conference paper
  • First Online:
Computational Mathematics Modeling in Cancer Analysis (CMMCA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13574))

Abstract

Automated and accurate classification of Whole Slide Image (WSI) is of great significance for the early diagnosis and treatment of cancer, which can be realized by Multi-Instance Learning (MIL). However, the current MIL method easily suffers from over-fitting due to the weak supervision of slide-level labels. In addition, it is difficult to distinguish discriminative instances in a WSI bag in the absence of pixel-level annotations. To address these problems, we propose a novel Clustering-Based Multi-Instance Learning method (CBMIL) for WSI classification. The CBMIL constructs feature set from phenotypic clusters to augment data for training the aggregation network. Meanwhile, a contrastive learning task is incorporated into the CBMIL for multi-task learning, which helps to regularize the feature aggregation process. In addition, the centroid of each phenotypic cluster is updated by the model, and the weights of the WSI patches are calculated by their similarity to the phenotypic centroids to highlight the significant patches. Our method is evaluated on two public WSI datasets (CAMELYON16 and TCGA-Lung) for binary tumor and cancer sub-types classification and achieves better performance and great interpretability compared with the state-of-the-art methods. The code is available at: https://github.com/wwu98934/CBMIL.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bejnordi, B.E., et al.: Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA 318(22), 2199–2210 (2017)

    Article  Google Scholar 

  2. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, pp. 1597–1607. PMLR (2020)

    Google Scholar 

  3. Chen, X., Fan, H., Girshick, R., He, K.: Improved baselines with momentum contrastive learning. arXiv preprint arXiv:2003.04297 (2020)

  4. Chen, X., He, K.: Exploring simple Siamese representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15750–15758 (2021)

    Google Scholar 

  5. Cornish, T.C., Swapp, R.E., Kaplan, K.J.: Whole-slide imaging: routine pathologic diagnosis. Adv. Anat. Pathol. 19(3), 152–159 (2012)

    Article  Google Scholar 

  6. Courtiol, P., Tramel, E.W., Sanselme, M., Wainrib, G.: Classification and disease localization in histopathology using only global labels: a weakly-supervised approach. arXiv preprint arXiv:1802.02212 (2018)

  7. Dietterich, T.G., Lathrop, R.H., Lozano-Pérez, T.: Solving the multiple instance problem with axis-parallel rectangles. Artif. Intell. 89(1–2), 31–71 (1997)

    Article  Google Scholar 

  8. Feng, J., Zhou, Z.H.: Deep MIML network. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 31 (2017)

    Google Scholar 

  9. Grill, J.B., et al.: Bootstrap your own latent-a new approach to self-supervised learning. Adv. Neural. Inf. Process. Syst. 33, 21271–21284 (2020)

    Google Scholar 

  10. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9729–9738 (2020)

    Google Scholar 

  11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  12. Ilse, M., Tomczak, J., Welling, M.: Attention-based deep multiple instance learning. In: International Conference on Machine Learning, pp. 2127–2136. PMLR (2018)

    Google Scholar 

  13. Kanavati, F., et al.: Weakly-supervised learning for lung carcinoma classification using deep learning. Sci. Rep. 10(1), 1–11 (2020)

    Article  Google Scholar 

  14. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  15. Lee, J., Lee, Y., Kim, J., Kosiorek, A., Choi, S., Teh, Y.W.: Set transformer: a framework for attention-based permutation-invariant neural networks. In: International Conference on Machine Learning, pp. 3744–3753. PMLR (2019)

    Google Scholar 

  16. Li, B., Li, Y., Eliceiri, K.W.: Dual-stream multiple instance learning network for whole slide image classification with self-supervised contrastive learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14318–14328 (2021)

    Google Scholar 

  17. Loshchilov, I., Hutter, F.: SGDR: stochastic gradient descent with warm restarts. arXiv preprint arXiv:1608.03983 (2016)

  18. Lu, M.Y., Chen, R.J., Wang, J., Dillon, D., Mahmood, F.: Semi-supervised histology classification using deep multiple instance learning and contrastive predictive coding. arXiv preprint arXiv:1910.10825 (2019)

  19. Lu, M.Y., Williamson, D.F., Chen, T.Y., Chen, R.J., Barbieri, M., Mahmood, F.: Data-efficient and weakly supervised computational pathology on whole-slide images. Nat. Biomed. Eng. 5(6), 555–570 (2021)

    Article  Google Scholar 

  20. Maron, O., Lozano-Pérez, T.: A framework for multiple-instance learning. Adv. Neural Inf. Process. Syst. 10 (1997)

    Google Scholar 

  21. Mobadersany, P., et al.: Predicting cancer outcomes from histology and genomics using convolutional networks. Proc. Natl. Acad. Sci. 115(13), E2970–E2979 (2018)

    Article  Google Scholar 

  22. Pantanowitz, L., et al.: Review of the current state of whole slide imaging in pathology. J. Pathol. Inform. 2(1), 36 (2011)

    Article  Google Scholar 

  23. Shao, Z., et al.: TransMIL: transformer based correlated multiple instance learning for whole slide image classification. Adv. Neural. Inf. Process. Syst. 34, 2136–2147 (2021)

    Google Scholar 

  24. Srinidhi, C.L., Ciga, O., Martel, A.L.: Deep neural network models for computational histopathology: a survey. Med. Image Anal. 67, 101813 (2021)

    Article  Google Scholar 

  25. Tomczak, K., Czerwińska, P., Wiznerowicz, M.: The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Wspolczesna Onkol. 2015(1A), A68–A77 (2014)

    Google Scholar 

  26. Verma, V., Luong, T., Kawaguchi, K., Pham, H., Le, Q.: Towards domain-agnostic contrastive learning. In: International Conference on Machine Learning, pp. 10530–10541. PMLR (2021)

    Google Scholar 

  27. Wang, X., Yan, Y., Tang, P., Bai, X., Liu, W.: Revisiting multiple instance neural networks. Pattern Recogn. 74, 15–24 (2018)

    Article  Google Scholar 

  28. Yamashita, R., Long, J., Saleem, A., Rubin, D.L., Shen, J.: Deep learning predicts postsurgical recurrence of hepatocellular carcinoma from digital histopathologic images. Sci. Rep. 11(1), 1–14 (2021)

    Article  Google Scholar 

  29. Yao, J., Zhu, X., Jonnagaddala, J., Hawkins, N., Huang, J.: Whole slide images based cancer survival prediction using attention guided deep multiple instance learning networks. Med. Image Anal. 65, 101789 (2020)

    Article  Google Scholar 

  30. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: beyond empirical risk minimization. arXiv preprint arXiv:1710.09412 (2017)

  31. Zhu, X., Yao, J., Zhu, F., Huang, J.: WSISA: making survival prediction from whole slide histopathological images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7234–7242 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liansheng Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, W., Zhu, Z., Magnier, B., Wang, L. (2022). Clustering-Based Multi-instance Learning Network for Whole Slide Image Classification. In: Qin, W., Zaki, N., Zhang, F., Wu, J., Yang, F. (eds) Computational Mathematics Modeling in Cancer Analysis. CMMCA 2022. Lecture Notes in Computer Science, vol 13574. Springer, Cham. https://doi.org/10.1007/978-3-031-17266-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17266-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17265-6

  • Online ISBN: 978-3-031-17266-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics