Abstract
Sensorless freehand 3D ultrasound (US) reconstruction poses a significant challenge, yet it holds considerable importance in improving the accessibility of 3D US applications in clinics. Current mainstream solutions, relying on inertial measurement units or deep learning, encounter issues like cumulative drift. To overcome these limitations, we present a novel sensorless 3D US solution with two key contributions. Firstly, we develop a novel coupling pad for 3D US, which can be seamlessly integrated into the conventional 2D US scanning process. This pad, featuring 3 \(N\)-shaped lines, provides 3D spatial information without relying on external tracking devices. Secondly, we introduce a coarse-to-fine optimization method for calculating poses of sequential 2D US images. The optimization begins with a rough estimation of poses and undergoes refinement using a distance-topology discrepancy reduction strategy. The proposed method is validated by both simulation and practical phantom studies, demonstrating its superior performance compared to state-of-the-art methods and good accuracy in 3D US reconstruction.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Chen, J.-F. et al.: Determination of scan-plane motion using speckle decorrelation: Theoretical considerations and initial test. Int. J. Imaging Syst. Technol. 8, 1, 38-44 (1997). https://doi.org/10.1002/(SICI)1098-1098(1997)8:1<38::AID-IMA5>3.0.CO;2-U
El Hadramy, S. et al.: Trackerless Volume Reconstruction from Intraoperative Ultrasound Images. In: Greenspan, H. et al. (eds.) Medical Image Computing and Computer Assisted Intervention - MICCAI 2023. pp. 303-312 Springer Nature Switzerland, Cham (2023). https://doi.org/10.1007/978-3-031-43999-5_29
Guo, H. et al.: Sensorless Freehand 3D Ultrasound Reconstruction via Deep Contextual Learning. In: Martel, A.L. et al. (eds.) Medical Image Computing and Computer Assisted Intervention - MICCAI 2020. pp. 463-472 Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-59716-0_44
Guo, H. et al.: Ultrasound Volume Reconstruction From Freehand Scans Without Tracking. IEEE Trans. Biomed. Eng. 70, 3, 970-979 (2023). https://doi.org/10.1109/TBME.2022.3206596
Huang, Q., Zeng, Z.: A Review on Real-Time 3D Ultrasound Imaging Technology. BioMed Research International. 2017, 1-20 (2017). https://doi.org/10.1155/2017/6027029
Li, Q. et al.: Trackerless Freehand Ultrasound with Sequence Modelling and Auxiliary Transformation Over Past and Future Frames. In: 2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI). pp. 1-5 IEEE, Cartagena, Colombia (2023). https://doi.org/10.1109/ISBI53787.2023.10230773
Luo, M. et al.: Deep Motion Network for Freehand 3D Ultrasound Reconstruction. In: Wang, L. et al. (eds.) Medical Image Computing and Computer Assisted Intervention - MICCAI 2022. pp. 290-299 Springer Nature Switzerland, Cham (2022). https://doi.org/10.1007/978-3-031-16440-8_28
Luo, M. et al.: Multi-IMU with Online Self-consistency for Freehand 3D Ultrasound Reconstruction. In: Greenspan, H. et al. (eds.) Medical Image Computing and Computer Assisted Intervention - MICCAI 2023. pp. 342-351 Springer Nature Switzerland, Cham (2023). https://doi.org/10.1007/978-3-031-43907-0_33
Luo, M. et al.: RecON: Online learning for sensorless freehand 3D ultrasound reconstruction. Medical Image Analysis. 87, 102810 (2023). https://doi.org/10.1016/j.media.2023.102810
Luo, M. et al.: Self Context and Shape Prior for Sensorless Freehand 3D Ultrasound Reconstruction. In: De Bruijne, M. et al. (eds.) Medical Image Computing and Computer Assisted Intervention - MICCAI 2021. pp. 201-210 Springer International Publishing, Cham (2021). https://doi.org/10.1007/978-3-030-87231-1_20
Miura, K. et al.: Localizing 2D Ultrasound Probe from Ultrasound Image Sequences Using Deep Learning for Volume Reconstruction. In: Hu, Y. et al. (eds.) Medical Ultrasound, and Preterm, Perinatal and Paediatric Image Analysis. pp. 97-105 Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-60334-2_10
Miura, K. et al.: Pose Estimation of 2D Ultrasound Probe from Ultrasound Image Sequences Using CNN and RNN. In: Noble, J.A. et al. (eds.) Simplifying Medical Ultrasound. pp. 96-105 Springer International Publishing, Cham (2021). https://doi.org/10.1007/978-3-030-87583-1_10
Morgan, M.R. et al.: Versatile Low-Cost Volumetric 3-D Ultrasound Platform for Existing Clinical 2-D Systems. IEEE Trans. Med. Imaging. 37, 10, 2248-2256 (2018). https://doi.org/10.1109/TMI.2018.2821901
Mozaffari, M.H., Lee, W.-S.: Freehand 3-D Ultrasound Imaging: A Systematic Review. Ultrasound in Medicine & Biology. 43, 10, 2099-2124 (2017). https://doi.org/10.1016/j.ultrasmedbio.2017.06.009
Ning, G. et al.: Spatial Position Estimation Method for 3D Ultrasound Reconstruction Based on Hybrid Transfomers. In: 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI). pp. 1-5 IEEE, Kolkata, India (2022). https://doi.org/10.1109/ISBI52829.2022.9761499
Prevost, R. et al.: 3D freehand ultrasound without external tracking using deep learning. Medical Image Analysis. 48, 187-202 (2018). https://doi.org/10.1016/j.media.2018.06.003
Prevost, R. et al.: Deep Learning for Sensorless 3D Freehand Ultrasound Imaging. In: Descoteaux, M. et al. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017. pp. 628-636 Springer International Publishing, Cham (2017). https://doi.org/10.1007/978-3-319-66185-8_71
Tuthill, T.A. et al.: Automated three-dimensional US frame positioning computed from elevational speckle decorrelation. Radiology. 209, 2, 575-582 (1998).https://doi.org/10.1148/radiology.209.2.9807593
Xie, Y. et al.: Image-Based 3D Ultrasound Reconstruction with Optical Flow via Pyramid Warping Network. In: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). pp. 3539-3542 IEEE, Mexico (2021). https://doi.org/10.1109/EMBC46164.2021.9630853
Bai, X. et al.: PointDSC: Robust point cloud registration using deep spatial consistency. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15859–15869 (2021) https://doi.org/10.1109/cvpr46437.2021.01560
Acknowledgements
This work was supported by the National Natural Science Foundation of China (No. 62201448), Zhejiang Provincial Natural Science Foundation of China (No. LQ23F010022), the China Postdoctoral Science Foundation (No. 2022M712548), and the Key Research and Development Program of Shaanxi Province under Grant. 2021GXLH-Z-097.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Ethics declarations
Disclosure of Interests
The authors have no competing interests to declare that are relevant to the content of this article.
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Dai, L., Zhao, K., Li, Z., Zhu, J., Liang, L. (2024). Advancing Sensorless Freehand 3D Ultrasound Reconstruction with a Novel Coupling Pad. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15004. Springer, Cham. https://doi.org/10.1007/978-3-031-72083-3_52
Download citation
DOI: https://doi.org/10.1007/978-3-031-72083-3_52
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72082-6
Online ISBN: 978-3-031-72083-3
eBook Packages: Computer ScienceComputer Science (R0)