Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advancing Sensorless Freehand 3D Ultrasound Reconstruction with a Novel Coupling Pad

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 (MICCAI 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15004))

  • 651 Accesses

Abstract

Sensorless freehand 3D ultrasound (US) reconstruction poses a significant challenge, yet it holds considerable importance in improving the accessibility of 3D US applications in clinics. Current mainstream solutions, relying on inertial measurement units or deep learning, encounter issues like cumulative drift. To overcome these limitations, we present a novel sensorless 3D US solution with two key contributions. Firstly, we develop a novel coupling pad for 3D US, which can be seamlessly integrated into the conventional 2D US scanning process. This pad, featuring 3 \(N\)-shaped lines, provides 3D spatial information without relying on external tracking devices. Secondly, we introduce a coarse-to-fine optimization method for calculating poses of sequential 2D US images. The optimization begins with a rough estimation of poses and undergoes refinement using a distance-topology discrepancy reduction strategy. The proposed method is validated by both simulation and practical phantom studies, demonstrating its superior performance compared to state-of-the-art methods and good accuracy in 3D US reconstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen, J.-F. et al.: Determination of scan-plane motion using speckle decorrelation: Theoretical considerations and initial test. Int. J. Imaging Syst. Technol. 8, 1, 38-44 (1997). https://doi.org/10.1002/(SICI)1098-1098(1997)8:1<38::AID-IMA5>3.0.CO;2-U

  2. El Hadramy, S. et al.: Trackerless Volume Reconstruction from Intraoperative Ultrasound Images. In: Greenspan, H. et al. (eds.) Medical Image Computing and Computer Assisted Intervention - MICCAI 2023. pp. 303-312 Springer Nature Switzerland, Cham (2023). https://doi.org/10.1007/978-3-031-43999-5_29

  3. Guo, H. et al.: Sensorless Freehand 3D Ultrasound Reconstruction via Deep Contextual Learning. In: Martel, A.L. et al. (eds.) Medical Image Computing and Computer Assisted Intervention - MICCAI 2020. pp. 463-472 Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-59716-0_44

  4. Guo, H. et al.: Ultrasound Volume Reconstruction From Freehand Scans Without Tracking. IEEE Trans. Biomed. Eng. 70, 3, 970-979 (2023). https://doi.org/10.1109/TBME.2022.3206596

  5. Huang, Q., Zeng, Z.: A Review on Real-Time 3D Ultrasound Imaging Technology. BioMed Research International. 2017, 1-20 (2017). https://doi.org/10.1155/2017/6027029

  6. Li, Q. et al.: Trackerless Freehand Ultrasound with Sequence Modelling and Auxiliary Transformation Over Past and Future Frames. In: 2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI). pp. 1-5 IEEE, Cartagena, Colombia (2023). https://doi.org/10.1109/ISBI53787.2023.10230773

  7. Luo, M. et al.: Deep Motion Network for Freehand 3D Ultrasound Reconstruction. In: Wang, L. et al. (eds.) Medical Image Computing and Computer Assisted Intervention - MICCAI 2022. pp. 290-299 Springer Nature Switzerland, Cham (2022). https://doi.org/10.1007/978-3-031-16440-8_28

  8. Luo, M. et al.: Multi-IMU with Online Self-consistency for Freehand 3D Ultrasound Reconstruction. In: Greenspan, H. et al. (eds.) Medical Image Computing and Computer Assisted Intervention - MICCAI 2023. pp. 342-351 Springer Nature Switzerland, Cham (2023). https://doi.org/10.1007/978-3-031-43907-0_33

  9. Luo, M. et al.: RecON: Online learning for sensorless freehand 3D ultrasound reconstruction. Medical Image Analysis. 87, 102810 (2023). https://doi.org/10.1016/j.media.2023.102810

  10. Luo, M. et al.: Self Context and Shape Prior for Sensorless Freehand 3D Ultrasound Reconstruction. In: De Bruijne, M. et al. (eds.) Medical Image Computing and Computer Assisted Intervention - MICCAI 2021. pp. 201-210 Springer International Publishing, Cham (2021). https://doi.org/10.1007/978-3-030-87231-1_20

  11. Miura, K. et al.: Localizing 2D Ultrasound Probe from Ultrasound Image Sequences Using Deep Learning for Volume Reconstruction. In: Hu, Y. et al. (eds.) Medical Ultrasound, and Preterm, Perinatal and Paediatric Image Analysis. pp. 97-105 Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-60334-2_10

  12. Miura, K. et al.: Pose Estimation of 2D Ultrasound Probe from Ultrasound Image Sequences Using CNN and RNN. In: Noble, J.A. et al. (eds.) Simplifying Medical Ultrasound. pp. 96-105 Springer International Publishing, Cham (2021). https://doi.org/10.1007/978-3-030-87583-1_10

  13. Morgan, M.R. et al.: Versatile Low-Cost Volumetric 3-D Ultrasound Platform for Existing Clinical 2-D Systems. IEEE Trans. Med. Imaging. 37, 10, 2248-2256 (2018). https://doi.org/10.1109/TMI.2018.2821901

  14. Mozaffari, M.H., Lee, W.-S.: Freehand 3-D Ultrasound Imaging: A Systematic Review. Ultrasound in Medicine & Biology. 43, 10, 2099-2124 (2017). https://doi.org/10.1016/j.ultrasmedbio.2017.06.009

  15. Ning, G. et al.: Spatial Position Estimation Method for 3D Ultrasound Reconstruction Based on Hybrid Transfomers. In: 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI). pp. 1-5 IEEE, Kolkata, India (2022). https://doi.org/10.1109/ISBI52829.2022.9761499

  16. Prevost, R. et al.: 3D freehand ultrasound without external tracking using deep learning. Medical Image Analysis. 48, 187-202 (2018). https://doi.org/10.1016/j.media.2018.06.003

  17. Prevost, R. et al.: Deep Learning for Sensorless 3D Freehand Ultrasound Imaging. In: Descoteaux, M. et al. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017. pp. 628-636 Springer International Publishing, Cham (2017). https://doi.org/10.1007/978-3-319-66185-8_71

  18. Tuthill, T.A. et al.: Automated three-dimensional US frame positioning computed from elevational speckle decorrelation. Radiology. 209, 2, 575-582 (1998).https://doi.org/10.1148/radiology.209.2.9807593

  19. Xie, Y. et al.: Image-Based 3D Ultrasound Reconstruction with Optical Flow via Pyramid Warping Network. In: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). pp. 3539-3542 IEEE, Mexico (2021). https://doi.org/10.1109/EMBC46164.2021.9630853

  20. Bai, X. et al.: PointDSC: Robust point cloud registration using deep spatial consistency. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15859–15869 (2021) https://doi.org/10.1109/cvpr46437.2021.01560

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 62201448), Zhejiang Provincial Natural Science Foundation of China (No. LQ23F010022), the China Postdoctoral Science Foundation (No. 2022M712548), and the Key Research and Development Program of Shaanxi Province under Grant. 2021GXLH-Z-097.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jihua Zhu or Libin Liang .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 172 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dai, L., Zhao, K., Li, Z., Zhu, J., Liang, L. (2024). Advancing Sensorless Freehand 3D Ultrasound Reconstruction with a Novel Coupling Pad. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15004. Springer, Cham. https://doi.org/10.1007/978-3-031-72083-3_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72083-3_52

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72082-6

  • Online ISBN: 978-3-031-72083-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics