Nothing Special   »   [go: up one dir, main page]

Skip to main content

Localizing 2D Ultrasound Probe from Ultrasound Image Sequences Using Deep Learning for Volume Reconstruction

  • Conference paper
  • First Online:
Medical Ultrasound, and Preterm, Perinatal and Paediatric Image Analysis (ASMUS 2020, PIPPI 2020)

Abstract

This paper presents an ultrasound (US) volume reconstruction method only from US image sequences using deep learning. The proposed method employs the convolutional neural network (CNN) to estimate the position of a 2D US probe only from US images. Our CNN model consists of two networks: feature extraction and motion estimation. We also introduce the consistency loss function to enforce. Through a set of experiments using US image sequence datasets with ground-truth motion measured by a motion capture system, we demonstrate that the proposed method exhibits the efficient performance on probe localization and volume reconstruction compared with the conventional method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://lmb.informatik.uni-freiburg.de/resources/datasets/FlyingChairs.en.html.

  2. 2.

    https://mi.eng.cam.ac.uk/Main/StradView.

References

  1. Balakrishnan, S., Patel, R., Illanes, A., Friebe, M.: Novel similarity metric for image-based out-of-plane motion estimation in 3D ultrasound. In: Proceedings of the International Conference on IEEE Engineering in Medicine and Biology Society, pp. 5739–5742, July 2019

    Google Scholar 

  2. Dosovitskiy, A., et al.: FlowNet: learning optical flow with convolutional networks In: Proceedings of the International Conference on Computer Vision, pp. 2758–2766, December 2015

    Google Scholar 

  3. Farnebäck, G.: Two-frame motion estimation based on polynomial expansion. In: Bigun, J., Gustavsson, T. (eds.) SCIA 2003. LNCS, vol. 2749, pp. 363–370. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45103-X_50

    Chapter  Google Scholar 

  4. Gee, A., Prager, R., Treece, G., Berman, L.: Engineering a freehand 3D ultrasound system. Pattern Recognit. Lett. 24(4–5), 757–777 (2003)

    Article  Google Scholar 

  5. Godard, C., Aodha, O.M., Brostow, G.J.: Unsupervised monocular depth estimation with left-right consistency. In: Proceedings of the International Conference on Computer Vision and Pattern Recognition, pp. 270–279, July 2017

    Google Scholar 

  6. Goldsmith, A., Pedersen, P., Szabo, T.: An inertial-optical tracking system for portable, quantitative, 3D ultrasound. In: Proceedings of the IEEE International Ultrasonics Symposium, pp. 45–49, November 2008

    Google Scholar 

  7. Hastenteufel, M., Vetter, M., Meinzer, H.P., Wolf, I.: Effect of 3D ultrasound probes on the accuracy of electromagnetic tracking systems. Ultrasound Med. Biol. 32(9), 1359–1368 (2006)

    Article  Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, pp. 770–778, June 2016

    Google Scholar 

  9. Horvath, S., et al.: Towards an ultrasound probe with vision: structured light to determine surface orientation. In: Linte, C.A., Moore, J.T., Chen, E.C.S., Holmes, D.R. (eds.) AE-CAI 2011. LNCS, vol. 7264, pp. 58–64. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32630-1_6

    Chapter  Google Scholar 

  10. Ito, K., Yodokawa, K., Aoki, T., Ohmiya, J., Kondo, S.: A probe-camera system for 3D ultrasound image reconstruction. In: Cardoso, M.J., et al. (eds.) BIVPCS/POCUS -2017. LNCS, vol. 10549, pp. 129–137. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67552-7_16

    Chapter  Google Scholar 

  11. Ito, S., Ito, K., Aoki, T., Ohmiya, J., Kondo, S.: Probe localization using structure from motion for 3D ultrasound image reconstruction. In: Proceedings of the International Symposium on Biomedical Imaging, pp. 68–71, April 2017

    Google Scholar 

  12. Lange, T., Kraft, S., Eulenstein, S., Lamecker, H., Schlag, P.: Automatic calibration of 3D ultrasound probes. In: Proceedings of the Bildverarbeitung für die Medizin, pp. 169–173, March 2011

    Google Scholar 

  13. Nelson, T.R., Pretorius, D.H.: Three-dimensional ultrasound imaging. Ultrasound Med. Biol. 24(9), 1243–1270 (1998)

    Article  Google Scholar 

  14. Prevost, R.R., et al.: 3D freehand ultrasound without external tracking using deep learning. Med. Image Anal. 48, 187–202 (2018)

    Article  Google Scholar 

  15. Prevost, R., Salehi, M., Sprung, J., Ladikos, A., Bauer, R., Wein, W.: Deep learning for sensorless 3D freehand ultrasound imaging. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10434, pp. 628–636. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66185-8_71

    Chapter  Google Scholar 

  16. Rafii-Tari, H., Abolmaesumi, P., Rohling, R.: Panorama ultrasound for guiding epidural anesthesia: a feasibility study. In: Taylor, R.H., Yang, G.-Z. (eds.) IPCAI 2011. LNCS, vol. 6689, pp. 179–189. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21504-9_17

    Chapter  Google Scholar 

  17. Rousseau, F., Hellier, P., Barillot, C.: A fully automatic calibration procedure for freehand 3D ultrasound. In: Proceedings of the IEEE International Symposium on Biomedical Imaging, pp. 985–988, July 2002

    Google Scholar 

  18. Stolka, P., Kang, H., Choti, M., Boctor, E.: Multi-DoF probe trajectory reconstruction with local sensors for 2D-to-3D ultrasound. In: Proceedings of the IEEE International Symposium on Biomedical Imaging, pp. 316–319, April 2010

    Google Scholar 

  19. Sun, S.-Y., Gilbertson, M., Anthony, B.W.: Probe localization for freehand 3D ultrasound by tracking skin features. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8674, pp. 365–372. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10470-6_46

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kanta Miura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Miura, K., Ito, K., Aoki, T., Ohmiya, J., Kondo, S. (2020). Localizing 2D Ultrasound Probe from Ultrasound Image Sequences Using Deep Learning for Volume Reconstruction. In: Hu, Y., et al. Medical Ultrasound, and Preterm, Perinatal and Paediatric Image Analysis. ASMUS PIPPI 2020 2020. Lecture Notes in Computer Science(), vol 12437. Springer, Cham. https://doi.org/10.1007/978-3-030-60334-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60334-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60333-5

  • Online ISBN: 978-3-030-60334-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics