Nothing Special   »   [go: up one dir, main page]

Skip to main content

Stochastic Process Discovery: Can It Be Done Optimally?

  • Conference paper
  • First Online:
Advanced Information Systems Engineering (CAiSE 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14663))

Included in the following conference series:

Abstract

Process discovery is the problem of automatically constructing a process model from an event log of an information system that supports the execution of a business process in an organisation. In this paper, we study how to construct models that, in addition to the control flow of the process, capture the importance, in terms of probabilities, of various execution scenarios of the process. Such probabilistic aspects of the process are instrumental in understanding the process and to predict aspects of its future. We formally define the problem of stochastic process discovery, which aims to describe the processes captured in the event log. We study several implications of this definition, and introduce two discovery techniques that return optimal solutions in the presence and absence of a model of the control flow of the process. The proposed discovery techniques have been implemented and are publicly available. Finally, we evaluate the feasibility and applicability of the new techniques and show that their models outperform models constructed using existing stochastic discovery techniques.

M. Montali—This work is partially supported by the UNIBZ project ADAPTERS and the PRIN MIUR project PINPOINT Prot. 2020FNEB27.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We use entropic relevance that relies on the uniform background coding model [2].

  2. 2.

    https://github.com/promworkbench/SLPNMiner.

  3. 3.

    https://www.tf-pm.org/resources/logs.

References

  1. van der Aalst, W.M.P.: Process Mining - Data Science in Action, 2nd edn. Springer, Cham (2016)

    Book  Google Scholar 

  2. Alkhammash, H., Polyvyanyy, A., Moffat, A., García-Bañuelos, L.: Entropic relevance: a mechanism for measuring stochastic process models discovered from event data. Inf. Syst. 107, 101922 (2022)

    Article  Google Scholar 

  3. Bause, F., Kritzinger, P.S.: Stochastic Petri Nets - An Introduction to the Theory, 2nd edn. Vieweg, Braunschweig (2002)

    Google Scholar 

  4. Bergami, G., Maggi, F.M., Montali, M., Peñaloza, R.: Probabilistic trace alignment. In: ICPM. IEEE (2021)

    Google Scholar 

  5. Brockhoff, T., Uysal, M.S., van der Aalst, W.M.P.: Time-aware concept drift detection using the earth mover’s distance. In: ICPM. IEEE (2020)

    Google Scholar 

  6. Burke, A., Leemans, S.J.J., Wynn, M.T.: Stochastic process discovery by weight estimation. In: Leemans, S., Leopold, H. (eds.) Process Mining Workshops. Lecture Notes in Business Information Processing, vol. 406, pp. 260–272. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-72693-5_20

    Chapter  Google Scholar 

  7. Burke, A., Leemans, S.J.J., Wynn, M.T.: Discovering stochastic process models by reduction and abstraction. In: Buchs, D., Carmona, J. (eds.) Application and Theory of Petri Nets and Concurrency. Lecture Notes in Computer Science(), vol. 12734, pp. 312–336. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-76983-3_16

    Chapter  Google Scholar 

  8. Jansen, N., Junges, S., Katoen, J.: Parameter synthesis in Markov models: a gentle survey. In: Raskin, J.F., Chatterjee, K., Doyen, L., Majumdar, R. (eds.) Principles of Systems Design. Lecture Notes in Computer Science, vol. 13660, pp. 407–437. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-22337-2_20

    Chapter  Google Scholar 

  9. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured process models from incomplete event logs. In: Ciardo, G., Kindler, E. (eds.) Application and Theory of Petri Nets and Concurrency. Lecture Notes in Computer Science, vol. 8489, pp. 91–110. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07734-5_6

    Chapter  Google Scholar 

  10. Leemans, S.J.J., Maggi, F.M., Montali, M.: Reasoning on labelled Petri nets and their dynamics in a stochastic setting. In: Di Ciccio, C., Dijkman, R., del Rio Ortega, A., Rinderle-Ma, S. (eds.) Business Process Management. Lecture Notes in Computer Science, vol. 13420, pp. 324–342. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16103-2_22

  11. Leemans, S.J.J., Maggi, F.M., Montali, M.: Enjoy the silence: analysis of stochastic Petri nets with silent transitions. CoRR abs/2306.06376 (2023)

    Google Scholar 

  12. Leemans, S.J.J., Mannel, L.L., Sidorova, N.: Significant stochastic dependencies in process models. Inf. Syst. 118, 102223 (2023)

    Article  Google Scholar 

  13. Leemans, S.J.J., Poppe, E., Wynn, M.T.: Directly follows-based process mining: exploration & a case study. In: ICPM. IEEE (2019)

    Google Scholar 

  14. Leemans, S.J.J., Syring, A.F., van der Aalst, W.M.P.: Earth movers’ stochastic conformance checking. In: Hildebrandt, T., van Dongen, B., Roglinger, M., Mendling, J. (eds.) Business Process Management Forum. Lecture Notes in Business Information Processing, vol. 360, pp. 127–143. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26643-1_8

    Chapter  Google Scholar 

  15. Marsan, M.A., Conte, G., Balbo, G.: A class of generalized stochastic Petri nets for the performance evaluation of multiprocessor systems. ACM Trans. Comput. Syst. 2(2), 93–122 (1984)

    Article  Google Scholar 

  16. Mazak, A., Wolny, S., Wimmer, M.: On the need for data-based model-driven engineering. In: Biffl, S., Eckhart, M., Luder, A., Weippl, E. (eds.) Security and Quality in Cyber-Physical Systems Engineering, pp. 103–127. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25312-7_5

    Chapter  Google Scholar 

  17. Molloy, M.K.: Performance analysis using stochastic Petri nets. IEEE Trans. Comput. 31(9) (1982)

    Google Scholar 

  18. Polyvyanyy, A., Moffat, A., García-Bañuelos, L.: An entropic relevance measure for stochastic conformance checking in process mining. In: ICPM. IEEE (2020)

    Google Scholar 

  19. Rogge-Solti, A., van der Aalst, W.M.P., Weske, M.: Discovering stochastic Petri nets with arbitrary delay distributions from event logs. In: Lohmann, N., Song, M., Wohed, P. (eds.) Business Process Management Workshops. Lecture Notes in Business Information Processing, vol. 171, pp. 15–27. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-06257-0_2

    Chapter  Google Scholar 

  20. Tax, N., Lu, X., Sidorova, N., Fahland, D., van der Aalst, W.M.P.: The imprecisions of precision measures in process mining. Inf. Process. Lett. 135, 1–8 (2018)

    Article  MathSciNet  Google Scholar 

  21. van der Werf, J.M.E.M., van Dongen, B.F., Hurkens, C.A.J., Serebrenik, A.: Process discovery using integer linear programming. Fundam. Inform. 94(3-4) (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sander J. J. Leemans .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Leemans, S.J.J., Li, T., Montali, M., Polyvyanyy, A. (2024). Stochastic Process Discovery: Can It Be Done Optimally?. In: Guizzardi, G., Santoro, F., Mouratidis, H., Soffer, P. (eds) Advanced Information Systems Engineering. CAiSE 2024. Lecture Notes in Computer Science, vol 14663. Springer, Cham. https://doi.org/10.1007/978-3-031-61057-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-61057-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-61056-1

  • Online ISBN: 978-3-031-61057-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics