Abstract
In process mining, extensive data about an organizational process is summarized by a formal mathematical model with well-grounded semantics. In recent years a number of successful algorithms have been developed that output Petri nets, and other related formalisms, from input event logs, as a way of describing process control flows. Such formalisms are inherently constrained when reasoning about the probabilities of the underlying organizational process, as they do not explicitly model probability. Accordingly, this paper introduces a framework for automatically discovering stochastic process models, in the form of Generalized Stochastic Petri Nets. We instantiate this Toothpaste Miner framework and introduce polynomial-time batch and incremental algorithms based on reduction rules. These algorithms do not depend on a preceding control-flow model. We show the algorithms terminate and maintain a deterministic model once found. An implementation and evaluation also demonstrate feasibility.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Source code is accessible at https://github.com/adamburkegh/toothpaste.
- 2.
BPIC2013 and sepsis logs: https://data.4tu.nl/. Teleclaims: http://www.processmining.org/event_logs_and_models_used_in_book.
- 3.
Full results are available at https://github.com/adamburkegh/toothpaste.
References
van der Aalst, W.: Process Mining: Data Science in Action, 2nd edn. Springer-Verlag, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49851-4_1
Anastasiou, N., Horng, T.C., Knottenbelt, W.: Deriving generalised stochastic Petri net performance models from high-precision location tracking data. In: Proceedings of the 5th International ICST Conference on Performance Evaluation Methodologies and Tools, pp. 91–100. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering) (2011)
Baum, L.E., Petrie, T., Soules, G., Weiss, N.: A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains. Ann. Math. Stat. 41(1), 164–171 (1970), publisher: JSTOR
Bause, F., Kritzinger, P.: Stochastic Petri Nets: An Introduction to the Theory. Vieweg+Teubner Verlag (2002)
Bellodi, E., Riguzzi, F., Lamma, E.: Statistical relational learning for workflow mining. Intell. Data Anal. 20(3), 515–541 (2016)
Berti, A., van Zelst, S.J., van der Aalst, W.M.P.: Process mining for python (PM4Py) : bridging the gap between process- and data science. In: ICPMD 2019, ICPM Demo Track 2019 : proceedings of the ICPM Demo Track 2019, co-located with 1st International Conference on Process Mining (ICPM 2019) : Aachen, Germany, 24–26 June 2019 / edited by Andrea Burattin (Technical University of Denmark, Kgs. Lyngby, Denmark), Artem Polyvyanyy (The University of Melbourne, Melbourne, Australia), Sebastiaan van Zelst (Fraunhofer Institute for Applied Information Technology (FIT), Sankt Augustin, Germany). CEUR workshop proceedings, vol. 2374, pp. 13–16. RWTH Aachen, Aachen, Germany (June 2019), backup Publisher: 1st International Conference on Process Mining, Aachen (Germany), 24 June 2019–24 June 2019
Bezem, M., Klop, J., Barendsen, E., de Vrijer, R., Terese: Term Rewriting Systems. Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, Cambridge (2003)
Breuker, D., Matzner, M., Delfmann, P., Becker, J.: Comprehensible Predictive Models for Business Processes. MIS Q. 40(4), 1009–1034 (2016)
Burke, A., Leemans, S.J.J., Wynn, M.T.: Stochastic process discovery by weight estimation. In: 2020 International Conference on Process Mining (ICPM) press (2020)
Carmona, J., Cortadella, J., Kishinevsky, M.: New region-based algorithms for deriving bounded petri nets. IEEE Trans. Comput. 59(3), 371–384 (2010)
Carrasco, R.C.: Accurate computation of the relative entropy between stochastic regular grammars. RAIRO-Theor. Inform. Appl. 31(5), 437–444 (1997)
Carrasco, R.C., Oncina, J.: Learning stochastic regular grammars by means of a state merging method. In: Carrasco, R.C., Oncina, J. (eds.) ICGI 1994. LNCS, vol. 862, pp. 139–152. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58473-0_144
Fünfgeld, S., Holzäpfel, M., Frey, M., Gauterin, F.: Stochastic forecasting of vehicle dynamics using sequential Monte Carlo simulation. IEEE Trans. Intell. Veh. 2(2), 111–122 (2017)
Geman, S., Geman, D.: Stochastic relaxation, gibbs distributions, and the bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-6(6), 721–741 (1984)
Hu, H., Xie, J., Hu, H.: A novel approach for mining stochastic process model from workflow logs. J. Comput. Inf. Syst. 7(9), 3113–3126 (2011)
Janssenswillen, G., Depaire, B., Faes, C.: Enhancing discovered process models using Bayesian inference and MCMC. In: Proceedings of the 2020 BPI Workshop (2020)
Leclercq, E., Lefebvre, D., El Medhi, S.O.: Identification of timed stochastic petri net models with normal distributions of firing periods. IFAC Proc. 42(4), 948–953 (2009)
Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Scalable process discovery with guarantees. In: Gaaloul, K., Schmidt, R., Nurcan, S., Guerreiro, S., Ma, Q. (eds.) CAISE 2015. LNBIP, vol. 214, pp. 85–101. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19237-6_6
Leemans, S.J.J., Polyvyanyy, A.: Stochastic-aware conformance checking: an entropy-based approach. In: Dustdar, S., Yu, E., Salinesi, C., Rieu, D., Pant, V. (eds.) CAiSE 2020. LNCS, vol. 12127, pp. 217–233. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49435-3_14
Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured process models from event logs - a constructive approach. In: Colom, J.-M., Desel, J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp. 311–329. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38697-8_17
Leemans, S.J., Poppe, E., Wynn, M.T.: Directly follows-based process mining: exploration & a case study. In: 2019 International Conference on Process Mining (ICPM), pp. 25–32, June 2019
Leemans, S.J.J., Syring, A.F., van der Aalst, W.M.P.: Earth movers’ stochastic conformance checking. In: Hildebrandt, T., van Dongen, B.F., Röglinger, M., Mendling, J. (eds.) BPM 2019. LNBIP, vol. 360, pp. 127–143. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26643-1_8
Liesaputra, V., Yongchareon, S., Chaisiri, S.: Efficient process model discovery using maximal pattern mining. In: Motahari-Nezhad, H.R., Recker, J., Weidlich, M. (eds.) BPM 2015. LNCS, vol. 9253, pp. 441–456. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23063-4_29
Maggi, F.M., Montali, M., Peñaloza, R.: Probabilistic conformance checking based on declarative process models. In: Herbaut, N., La Rosa, M. (eds.) CAiSE 2020. LNBIP, vol. 386, pp. 86–99. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58135-0_8
Marsan, M.A., Balbo, G., Bobbio, A., Chiola, G., Conte, G., Cumani, A.: The effect of execution policies on the semantics and analysis of stochastic Petri nets. IEEE Trans. Softw. Eng. 15(7), 832–846 (1989)
Matsuno, H., Doi, A., Nagasaki, M., Miyano, S.: Hybrid petri net representation of gene regulatory network. In: Biocomputing 2000, pp. 341–352. World Scientific, December 1999
Mokhov, A., Carmona, J., Beaumont, J.: Mining conditional partial order graphs from event logs. In: Koutny, M., Desel, J., Kleijn, J. (eds.) Transactions on Petri Nets and Other Models of Concurrency XI. LNCS, vol. 9930, pp. 114–136. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53401-4_6
Moreira, C., Haven, E., Sozzo, S., Wichert, A.: Process mining with real world financial loan applications: improving inference on incomplete event logs. PLOS ONE 13(12), e0207806 (2018)
Polyvyanyy, A., Moffat, A., García-Bañuelos, L.: An Entropic Relevance Measure for Stochastic Conformance Checking in Process Mining. arXiv e-prints 2007. arXiv:2007.09310 (Jul 2020)
Rogge-Solti, A., van der Aalst, W.M.P., Weske, M.: Discovering stochastic petri nets with arbitrary delay distributions from event logs. In: Lohmann, N., Song, M., Wohed, P. (eds.) BPM 2013. LNBIP, vol. 171, pp. 15–27. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06257-0_2
Rogge-Solti, A., Weske, M.: Prediction of business process durations using non-Markovian stochastic Petri nets. Inf. Syst. 54, 1–14 (2015)
Secretary, I.C.: Information technology - Z formal specification notation - Syntax, type system and semantics. Standard, International Organization for Standardization, Geneva, CH (March 2002), volume: (2002)
Silva, R., Zhang, J., Shanahan, J.G.: Probabilistic workflow mining. In: Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, pp. 275–284. KDD 2005. Association for Computing Machinery, Chicago, Illinois, USA, August 2005
Tax, N., Lu, X., Sidorova, N., Fahland, D., van der Aalst, W.M.P.: The imprecisions of precision measures in process mining. Inf. Process. Lett. 135, 1–8 (2018). https://doi.org/10.1016/j.ipl.2018.01.013
Thierry-Mieg, Y.: Structural reductions revisited. In: Janicki, R., Sidorova, N., Chatain, T. (eds.) PETRI NETS 2020. LNCS, vol. 12152, pp. 303–323. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51831-8_15
Thollard, F., Dupont, P., De La Higuera, C.: Probabilistic DFA inference using Kullback-Leibler divergence and minimality, pp. 975–982, June 2000
Verwer, S., Eyraud, R., De La Higuera, C.: PAutomaC: a probabilistic automata and hidden Markov models learning competition. Mach. Learn. 96(1–2), 129–154 (2014)
Vidal, E., Thollard, F., de la Higuera, C., Casacuberta, F., Carrasco, R.: Probabilistic finite-state machines - part II. IEEE Trans. Pattern Anal. Mach. Intell. 27(7), 1026–1039 (2005)
Vidal, E., Thollard, F., Higuera, C.d.l., Casacuberta, F., Carrasco, R.C.: Probabilistic finite-state machines - part I. IEEE Trans. Pattern Anal. Mach. Intell. 27(7), 1013–1025 (2005)
Wang, X., Chen, G., Zhao, Q., Guo, Z.: Reduction of stochastic petri nets for reliability analysis. In: 2007 8th International Conference on Electronic Measurement and Instruments, pp. 1-222–1-226, August 2007, iSSN: null
Weisberg, M.: Simulation and Similarity : Using Models to Understand the World. Oxford University Press, Oxford (2013)
Zhou, M., Venkatesh, K.: Modeling, Simulation, and Control of Flexible Manufacturing Systems: A Petri Net Approach. World Scientific (1999)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Burke, A., Leemans, S.J.J., Wynn, M.T. (2021). Discovering Stochastic Process Models by Reduction and Abstraction. In: Buchs, D., Carmona, J. (eds) Application and Theory of Petri Nets and Concurrency. PETRI NETS 2021. Lecture Notes in Computer Science(), vol 12734. Springer, Cham. https://doi.org/10.1007/978-3-030-76983-3_16
Download citation
DOI: https://doi.org/10.1007/978-3-030-76983-3_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-76982-6
Online ISBN: 978-3-030-76983-3
eBook Packages: Computer ScienceComputer Science (R0)