Nothing Special   »   [go: up one dir, main page]

Skip to main content

Learning Heuristics for Combinatorial Optimization Problems on K-Partite Hypergraphs

  • Conference paper
  • First Online:
Integration of Constraint Programming, Artificial Intelligence, and Operations Research (CPAIOR 2024)

Abstract

Recently, deep neural networks have demonstrated remarkable performance in addressing combinatorial optimization challenges. The expressive power of graph neural networks combined with Reinforcement Learning (RL) enabled learning heuristics that rival or even surpass conventional methods. Such advancements have paved the way for Neural Combinatorial Optimization (NCO), an emerging paradigm that enables end-to-end heuristic learning without the reliance on expert knowledge. In this paper, we propose an NCO approach to learn heuristics for the vast family of Combinatorial Optimization Problems (COPs) defined on K-partite hypergraphs, including multi-dimensional assignment or scheduling problems. Central to our approach is the ability to represent sophisticated functions on K-partite hypergraphs, using a novel family of neural networks. We show that our heuristic competes with other ones in comparable settings and that our method can also be applied to more complex real-life assignment and scheduling problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Balas, E., Saltzman, M.J.: An algorithm for the three-index assignment problem. Oper. Res. 39(1), 150–161 (1991)

    Article  MathSciNet  Google Scholar 

  2. Bekker, H., Braad, E.P., Goldengorin, B.: Using bipartite and multidimensional matching to select the roots of a system of polynomial equations. In: Gervasi, O., et al. (eds.) ICCSA 2005, Part IV. LNCS, vol. 3483, pp. 397–406. Springer, Heidelberg (2005). https://doi.org/10.1007/11424925_43

    Chapter  Google Scholar 

  3. Bello, I., Pham, H., Le, Q.V., Norouzi, M., Bengio, S.: Neural combinatorial optimization with reinforcement learning (2017). https://doi.org/10.48550/arXiv.1611.09940, arXiv:1611.09940 [cs, stat]

  4. Ceselli, A., Righini, G.: A branch-and-price algorithm for the multilevel generalized assignment problem. Oper. Res. 54(6), 1172–1184 (2006)

    Article  MathSciNet  Google Scholar 

  5. Croes, G.A.: A method for solving traveling-salesman problems. Oper. Res. 6(6), 791–812 (1958)

    Article  MathSciNet  Google Scholar 

  6. Dang, X., Cheng, Q., Zhu, H.: Indoor multiple sound source localization via multi-dimensional assignment data association. IEEE/ACM Trans. Audio Speech Lang. Process. 27(12), 1944–1956 (2019). https://doi.org/10.1109/TASLP.2019.2935837

    Article  Google Scholar 

  7. Feng, Y., You, H., Zhang, Z., Ji, R., Gao, Y.: Hypergraph neural networks. CoRR abs/1809.09401 (2018). http://arxiv.org/abs/1809.09401

  8. French, A.P., Wilson, J.M.: Heuristic solution methods for the multilevel generalized assignment problem. J. Heuristics 8, 143–153 (2002)

    Article  Google Scholar 

  9. Frieze, A., Yadegar, J.: An algorithm for solving 3-dimensional assignment problems with application to scheduling a teaching practice. J. Oper. Res. Soc. 32, 989–995 (1981)

    Article  Google Scholar 

  10. Gao, Y., Feng, Y., Ji, S., Ji, R.: HGNN+: general hypergraph neural networks. IEEE Trans. Pattern Anal. Mach. Intell. 45(3), 3181–3199 (2022)

    Google Scholar 

  11. Garey, M.R., Johnson, D.S.: Computers and Intractability, vol. 174. Freeman, San Francisco (1979)

    Google Scholar 

  12. Gibbons, D., Lim, C.C., Shi, P.: Deep learning for bipartite assignment problems. In: 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), pp. 2318–2325 (2019). https://doi.org/10.1109/SMC.2019.8914228

  13. Glover, F., Hultz, J., Klingman, D.: Improved computer-based planning techniques, part 1. Interfaces 8(4), 16–25 (1978)

    Article  Google Scholar 

  14. Gutin, G., Goldengorin, B., Huang, J.: Worst case analysis of max-regret, greedy and other heuristics for multidimensional assignment and traveling salesman problems. In: Erlebach, T., Kaklamanis, C. (eds.) WAOA 2006. LNCS, vol. 4368, pp. 214–225. Springer, Heidelberg (2007). https://doi.org/10.1007/11970125_17

    Chapter  Google Scholar 

  15. Horowitz, E., Sahni, S.: Exact and approximate algorithms for scheduling nonidentical processors. J. ACM (JACM) 23(2), 317–327 (1976)

    Article  MathSciNet  Google Scholar 

  16. Karapetyan, D., Gutin, G., Goldengorin, B.: Empirical evaluation of construction heuristics for the multidimensional assignment problem. arXiv preprint arXiv:0906.2960 (2009)

  17. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  18. Kool, W., van Hoof, H., Welling, M.: Attention, learn to solve routing problems! (2019). https://doi.org/10.48550/arXiv.1803.08475, arXiv:1803.08475 [cs, stat]

  19. Lin, S., Kernighan, B.W.: An effective heuristic algorithm for the traveling-salesman problem. Oper. Res. 21(2), 498–516 (1973)

    Article  MathSciNet  Google Scholar 

  20. Pierskalla, W.P.: The multidimensional assignment problem. Oper. Res. 16(2), 422–431 (1968)

    Article  Google Scholar 

  21. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley, Hoboken (2014)

    Google Scholar 

  22. Rainjonneau, S., et al.: Quantum algorithms applied to satellite mission planning for earth observation. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 16, 7062–7075 (2023). https://doi.org/10.1109/jstars.2023.3287154, http://dx.doi.org/10.1109/JSTARS.2023.3287154

  23. Schlichtkrull, M., Kipf, T.N., Bloem, P., van den Berg, R., Titov, I., Welling, M.: Modeling relational data with graph convolutional networks. In: Gangemi, A., et al. (eds.) ESWC 2018. LNCS, vol. 10843, pp. 593–607. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93417-4_38

    Chapter  Google Scholar 

  24. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347 (2017)

  25. Spieksma, F.C., Woeginger, G.J.: Geometric three-dimensional assignment problems. Eur. J. Oper. Res. 91(3), 611–618 (1996)

    Article  Google Scholar 

  26. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (2018)

    Google Scholar 

  27. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  28. Vinyals, O., Fortunato, M., Jaitly, N.: Pointer networks (2017). https://doi.org/10.48550/arXiv.1506.03134, arXiv:1506.03134 [cs, stat]

  29. Wang, J., Song, G., Liang, Z., Demeulemeester, E., Hu, X., Liu, J.: Unrelated parallel machine scheduling with multiple time windows: an application to earth observation satellite scheduling. Comput. Oper. Res. 149, 106010 (2023)

    Article  MathSciNet  Google Scholar 

  30. Whitney, H.: A theorem on graphs. Ann. Math. 378–390 (1931)

    Google Scholar 

  31. Zhang, R., et al.: Learning to solve multiple-TSP with time window and rejections via deep reinforcement learning. IEEE Trans. Intell. Transp. Syst. 1–12 (2022). https://doi.org/10.1109/TITS.2022.3207011

Download references

Acknowledgment

We acknowledge the support of the IRT-MINDS project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Zouitine .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zouitine, M., Berjaoui, A., Lagnoux, A., Pellegrini, C., Rachelson, E. (2024). Learning Heuristics for Combinatorial Optimization Problems on K-Partite Hypergraphs. In: Dilkina, B. (eds) Integration of Constraint Programming, Artificial Intelligence, and Operations Research. CPAIOR 2024. Lecture Notes in Computer Science, vol 14743. Springer, Cham. https://doi.org/10.1007/978-3-031-60599-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-60599-4_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-60601-4

  • Online ISBN: 978-3-031-60599-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics