Nothing Special   »   [go: up one dir, main page]

Skip to main content

Worst Case Analysis of Max-Regret, Greedy and Other Heuristics for Multidimensional Assignment and Traveling Salesman Problems

  • Conference paper
Approximation and Online Algorithms (WAOA 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4368))

Included in the following conference series:

Abstract

Optimization heuristics are often compared with each other to determine which one performs best by means of worst-case performance ratio reflecting the quality of returned solution in the worst case. The domination number is a complement parameter indicating the quality of the heuristic in hand by determining how many feasible solutions are dominated by the heuristic solution. We prove that the Max-Regret heuristic introduced by Balas and Saltzman finds the unique worst possible solution for some instances of the s-dimensional (s≥3) assignment and asymmetric traveling salesman problems of each possible size. We show that the Triple Interchange heuristic (for s=3) also introduced by Balas and Saltzman and two new heuristics (Part and Recursive Opt Matching) have factorial domination numbers for the s-dimensional (s≥3) assignment problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alon, N., Gutin, G., Krivelevich, M.: Algorithms with large domination ratio. J. Algorithms 50, 118–131 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Protasi, M.: Complexity and Approximation. Springer, Berlin (1999)

    MATH  Google Scholar 

  3. Balas, E., Saltzman, M.J.: An algorithm for the three-index assignment problem. Operations Research 39, 150–161 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bang-Jensen, J., Gutin, G., Yeo, A.: When the greedy algorithm fails. Discrete Optimization 1, 121–127 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bekker, H., Braad, E.P., Goldengorin, B.: Using bipartite and multidimentional matchings to select roots of a system of polynomial equations. In: Gervasi, O., Gavrilova, M.L., Kumar, V., Laganá, A., Lee, H.P., Mun, Y., Taniar, D., Tan, C.J.K. (eds.) ICCSA 2005. LNCS, vol. 3483, pp. 397–406. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  6. Ben-Arieh, D., Gutin, G., Penn, M., Yeo, A., Zverovitch, A.: Transformations of generalized ATSP into ATSP. Operations Research Letters 31, 357–365 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bendall, G., Margot, F.: Greedy Type Resistance of Combinatorial Problems. To appear in Discrete Optimization

    Google Scholar 

  8. Burkard, R., Cela, E.: Linear assignment problems and extensions. In: Du, Z., Pardalos, P. (eds.) Handbook of Combinatorial Optimization, pp. 75–149. Kluwer Academic Publishers, Dordrecht (1999)

    Google Scholar 

  9. Ghosh, D., Goldengorin, B., Gutin, G., Jäger, G.: Tolerance based greedy algorithms for the traveling salesman problem. To appear in Communic. in DQM

    Google Scholar 

  10. Glover, F., Gutin, G., Yeo, A., Zverovich, A.: Construction heuristics for the asymmetric TSP. European Journal of Operational Research 129, 555–568 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  11. Glover, F., Punnen, A.: The traveling salesman problem: New solvable cases and linkages with the development of approximation algorithms. J. Oper. Res. Soc. 48, 502–510 (1997)

    MATH  Google Scholar 

  12. Goldengorin, B., Jäger, G., Molitor, P.: Some Basics on Tolerances. In: Cheng, S.-W., Poon, C.K. (eds.) AAIM 2006. LNCS, vol. 4041, pp. 194–206. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  13. Gutin, G., Punnen, A. (eds.): The Traveling Salesman Problem and its Variations. Kluwer, Dordrecht (2002)

    MATH  Google Scholar 

  14. Gutin, G., Jakubowicz, H., Ronnen, S., Zverovitch, A.: Seismic vessel problem. Communic. in DQM 8, 13–20 (2005)

    Google Scholar 

  15. Gutin, G., Yeo, A.: Domination Analysis of Combinatorial Optimization Algorithms and Problems. In: Golumbic, M., Hartman, I. (eds.) Graph Theory, Combinatorics and Algorithms: Interdisciplinary Applications. Springer, Heidelberg (2005)

    Google Scholar 

  16. Gutin, G., Yeo, A.: Polynomial approximation algorithms for the TSP and QAP with a factorial domination number. Discrete Appl. Math. 119, 107–116 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  17. Gutin, G., Yeo, A.: Anti-matroids. Operations Research Letters 30, 97–99 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  18. Gutin, G., Yeo, A., Zverovitch, A.: Exponential Neighborhoods and Domination Analysis for the TSP. In: Gutin, G., Punnen, A. (eds.) The Traveling Salesman Problem and its Variations. Kluwer, Dordrecht (2002)

    Google Scholar 

  19. Helsgaun, K.: An effective implementation of the Lin-Kernighan traveling salesman heuristic. Europ. J. Oper. Res. 126, 106–130 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  20. Johnson, D.S., Gutin, G., McGeoch, L., Yeo, A., Zhang, X., Zverovitch, A.: Experimental Analysis of Heuristics for ATSP. In: Gutin, G., Punnen, A. (eds.) The Traveling Salesman Problem and its Variations. Kluwer, Dordrecht (2002)

    Google Scholar 

  21. Koller, A.E., Noble, S.D.: Domination analysis of greedy heuristics for the frequency assignment problem. Discrete Math. 275, 331–338 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  22. Punnen, A.P., Margot, F., Kabadi, S.N.: TSP heuristics: domination analysis and complexity. Algorithmica 35, 111–127 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  23. Punnen, A.P., Kabadi, S.: Domination analysis of some heuristics for the traveling salesman problem. Discrete Appl. Math. 119, 117–128 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  24. Robertson, A.J.: A set of greedy randomized adaptive local search procedure implementations for the multidimentional assignment problem. Computational Optimization and Applications 19, 145–164 (2001)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gutin, G., Goldengorin, B., Huang, J. (2007). Worst Case Analysis of Max-Regret, Greedy and Other Heuristics for Multidimensional Assignment and Traveling Salesman Problems. In: Erlebach, T., Kaklamanis, C. (eds) Approximation and Online Algorithms. WAOA 2006. Lecture Notes in Computer Science, vol 4368. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11970125_17

Download citation

  • DOI: https://doi.org/10.1007/11970125_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69513-4

  • Online ISBN: 978-3-540-69514-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics