Abstract
Cryptographic applications often require proving statements about hidden secrets satisfying certain circuit relations. Moreover, these proofs must often be generated obliviously, i.e., without knowledge of the secret. This work presents a new technique called—FRI on hidden values—for efficiently proving such statements. This technique enables a polynomial commitment scheme for values hidden inside linearly homomorphic primitives, such as linearly homomorphic encryption, linearly homomorphic commitment, group exponentiation, fully homomorphic encryption, etc. Building on this technique, we obtain the following results.
-
1.
An efficient SNARK for proving the honest evaluation of FHE ciphertexts. This allows for an efficiently verifiable private delegation of computation, where the client only needs to perform logarithmic many FHE computations to verify the correctness of the computation.
-
2.
An efficient approach for privately delegating the computation of zkSNARKs to a single untrusted server, without requiring the server to make any non-black-box use of cryptography. All prior works require multiple servers and the assumption that some subset of the servers are honest.
-
3.
A weighted threshold signature scheme that does not require any setup. In particular, parties may sample their own keys independently, and no distributed key generation (DKG) protocol is needed. Furthermore, the efficiency of our scheme is completely independent of the weights.
Prior to this work, there were no known black-box feasibility results for any of these applications. We also investigate the use of this approach in the context of public proof aggregation. These are only a few representative applications that we explore in this paper. We expect our techniques to be widely applicable in many other scenarios.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
For instance, \(\llbracket {m}\rrbracket \) could be a linearly homomorphic encryption of m, a linearly homomorphic commitment of m, group exponentiation (i.e., \(\llbracket {m}\rrbracket =g^m\)), or fully homomorphic encryption of m. We stress that this encapsulation could either be hiding (e.g., encryption/commitment) or not hiding (e.g., group exponentiation).
- 3.
Note that the prover is able to compute this evaluation because of the linear homomorphism of the encapsulation scheme.
- 4.
To be precise, the proof size and verification time is \(O(\log ^2 d\cdot \lambda )\), where \(\lambda \) is the security parameter. Throughout the paper, this \(\lambda \) factor is implicitly assumed in the proof size of all FRI-based SNARKs.
- 5.
Our approach can be combined with any polynomial IOP-based SNARKs. See the full version [GGW23] for more details.
- 6.
It is typically assumed that this pre-processing is done by a trusted party and the verifier only gets oracle access to it. However, one could also imagine the client himself doing this one-time reusable pre-processing.
- 7.
The process of computing zkSNARKs typically starts with the computation of an extended witness. This extended witness can be seen as a computation trace generated by evaluating the relation circuit with the statement and a (short) secret witness as input.
- 8.
Specifically, the server performs \(O(|\mathcal {R}|)\) FHE evaluations (that have the same multiplicative depth as \(\mathcal {R}\)) to generate the extended witness and then \(O(|\mathcal {R}|\cdot \log |\mathcal {R}|)\) additional FHE evaluations with a constant multiplicative depth.
- 9.
That is, the rule that defines which subsets are authorized. For instance, for (unweighted) threshold access structure, subsets are authorized if and only if its cardinality is \(\geqslant t\).
- 10.
That is, given an indicator vector \(B\in {\{0,1\}} ^n\) for a subset \(B\subseteq [n]\), \(C(B)=1\) if and only if B is authorized.
- 11.
In fact, it would be linear in the threshold.
- 12.
The case where both vectors are field vectors does not require pairing. However, this is not the interesting case we consider in this paper. That is, the prover knows all the witnesses in the clear.
- 13.
Since there are no known linear secret sharings with weight-independent secret shares.
- 14.
In more details, party i holding secret key \(\mathsf {\phantom {p}sk}_i\) needs to send \((g^{\mathsf {\phantom {p}sk}_i\cdot \tau },g^{\mathsf {\phantom {p}sk}_i\cdot \tau ^2},\ldots , g^{\mathsf {\phantom {p}sk}_i\cdot \tau ^n})\) as its hint, where \((g^{ \tau },g^{ \tau ^2},\ldots , g^{ \tau ^n})\) is the KZG-style SRS.
- 15.
The committer knows the input x, but the receiver does not.
- 16.
We remark that we slightly abuse notation here and use \(\llbracket {m}\rrbracket \) to denote an encapsulation of m, even when the encapsulation scheme is randomized. In particular, for simplicity of notation, we do not make the randomness explicit in this representation. Looking ahead, whenever relevant, the use of randomness will be made clear in the accompanying text.
- 17.
If instead, the prover starts with domain evaluations of f on domain \(\mathbb {H}\subset \mathbb {F}\), which is a multiplicative subgroup of size \(d+1\), they can use FFT to compute evaluations on the larger domain \(D\). Since FFT is a linear operation, this translation also requires the prover to only perform linear operations on the evaluations on \(\mathbb {H}\).
- 18.
The commitment is sent to the server so that the Fiat-Shamir heuristics will also take it as part of the transcript.
- 19.
A multisignature scheme between n parties allows each party to sample its own key pair and sign messages independently, after which, a succinct aggregated signature can be generated to convince the verifier that all n parties have signed the message. Intuitively, a multisignature scheme is an n-out-of-n threshold signature scheme.
- 20.
In order to prevent the rogue key attack [BDN18], the aggregation of the public keys typically uses a random linear combination \(\textsf{apk}= \prod _i(\mathsf {\phantom {p}pk}_i)^{\alpha _i}\) given by the random oracle \(\alpha _i = \textsf{RO}(\mathsf {\phantom {p}pk}_1,\ldots ,\mathsf {\phantom {p}pk}_n,\mathsf {\phantom {p}pk}_i)\). This can be equivalently treated as each public key \(\mathsf {\phantom {p}pk}_i\) is reset to be \( (\mathsf {\phantom {p}pk}_i)^{\alpha _i}\). For simplicity of presentation, we omit this detail.
- 21.
Typically, in a multisignature scheme, we require all n parties to sign the message. In these cases, the aggregated public key \(\textsf{apk}\) can be precomputed and, hence, the verification is indeed succinct. In our setting, we do not require all parties to sign and will compute \(\textsf{apk}\) on the fly. Most known multisignature schemes [BDN18, MPSW19, NRS21] support such a modification, although the resulting verification is no longer succinct.
- 22.
Note that this is a deterministic process that any party can compute given \((\mathsf {\phantom {p}pk}_1,\ldots ,\mathsf {\phantom {p}pk}_n)\) and \((w_1,\ldots ,w_n)\).
- 23.
Which can be checked as \(B(x)\cdot (1-B(x))\) should be 0 on the information locations.
- 24.
If the LHEncap scheme is keyless and/or deterministic, then \(\mathcal {K}=\emptyset \) and/or \(\mathcal {R}=\emptyset \), respectively.
- 25.
For instance, the Merkle hash tree-based commitment.
- 26.
Here, we assume the knowledge extractor holds the secret key for LHEncap. This makes sense because in all of our applications, the verifier does hold the secret key.
- 27.
This is a reasonable assumption because, in many target applications, the first layer of FRI is public and generated in the preprocessing phase. For example, in the threshold signature application, the first layer of FRI is the polynomial defined by parties’ public keys. Therefore, in the preprocessing phase, every party can check if the prover’s first message is computed correctly or not. To understand why this assumption is necessary, we refer the readers to the proof.
- 28.
For appropriately chosen parameters, the knowledge soundness error \(\varepsilon \) in Corollary 1 can be made negligible in \(\lambda \).
References
Aranha, D.F., Costache, A., Guimarães, A., Soria-Vazquez, E.: Heliopolis: verifiable computation over homomorphically encrypted data from interactive oracle proofs is practical. Cryptology ePrint Archive, Paper 2023/1949 (2023). https://eprint.iacr.org/2023/1949
Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-preserving signatures and commitments to group elements. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7_12
Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: lightweight sublinear arguments without a trusted setup. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017: 24th Conference on Computer and Communications Security, pp. 2087–2104, Dallas, TX, USA, 31 October–2 November 2017. ACM Press (2017). https://doi.org/10.1145/3133956.3134104
Applebaum, B., Ishai, Y., Kushilevitz, E.: From secrecy to soundness: efficient verification via secure computation. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 152–163. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14165-2_14
Applebaum, B., Nir, O.: Upslices, downslices, and secret-sharing with complexity of \(1.5^n\). In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part III. LNCS, vol. 12827, pp. 627–655. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84252-9_21
Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs: short proofs for confidential transactions and more. In: 2018 IEEE Symposium on Security and Privacy, pp. 315–334, San Francisco, CA, USA, 21–23 May 2018. IEEE Computer Society Press (2018). https://doi.org/10.1109/SP.2018.00020
Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Fast Reed-Solomon interactive oracle proofs of proximity. In: Chatzigiannakis, I., Kaklamanis, C., Marx, D., Sannella, D. (eds.) ICALP 2018: 45th International Colloquium on Automata, Languages and Programming. LIPIcs, vol. 107, pp. 14:1–14:17, Prague, Czech Republic, 9–13 July 2018. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2018). https://doi.org/10.4230/LIPIcs.ICALP.2018.14
Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-knowledge arguments for arithmetic circuits in the discrete log setting. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 327–357. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_12
Bitansky, N., et al.: The hunting of the SNARK. J. Cryptol. 30(4), 989–1066 (2017). https://doi.org/10.1007/s00145-016-9241-9
Bois, A., Cascudo, I., Fiore, D., Kim, D.: Flexible and efficient verifiable computation on encrypted data. In: Garay, J.A. (ed.) PKC 2021, Part II. LNCS, vol. 12711, pp. 528–558. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75248-4_19
Ben-Sasson, E., et a.: Zerocash: decentralized anonymous payments from bitcoin. In: 2014 IEEE Symposium on Security and Privacy, pp. 459–474, Berkeley, CA, USA, 18–21 May 2014. IEEE Computer Society Press (2014). https://doi.org/10.1109/SP.2014.36
Bootle, J., Cerulli, A., Ghadafi, E., Groth, J., Hajiabadi, M., Jakobsen, S.K.: Linear-time zero-knowledge proofs for arithmetic circuit satisfiability. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part III. LNCS, vol. 10626, pp. 336–365. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70700-6_12
Bootle, J., Cerulli, A., Groth, J., Jakobsen, S., Maller, M.: Arya: nearly linear-time zero-knowledge proofs for correct program execution. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018, Part I. LNCS, vol. 11272, pp. 595–626. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03326-2_20
Bootle, J., Chiesa, A., Groth, J.: Linear-time arguments with sublinear verification from tensor codes. In: Pass, R., Pietrzak, K. (eds.) TCC 2020, Part II. LNCS, vol. 12551, pp. 19–46. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64378-2_2
Bowe, S., Chiesa, A., Green, M., Miers, I., Mishra, P., Wu, H.: ZEXE: enabling decentralized private computation. In: 2020 IEEE Symposium on Security and Privacy, pp. 947–964, San Francisco, CA, USA, 18–21 May 2020. IEEE Computer Society Press (2020). https://doi.org/10.1109/SP40000.2020.00050
Ben-Sasson, E., Carmon, D., Ishai, Y., Kopparty, S., Saraf, S.: Proximity gaps for Reed-Solomon codes. In: 61st Annual Symposium on Foundations of Computer Science, pp. 900–909, Durham, NC, USA, 16–19 November 2020. IEEE Computer Society Press (2020). https://doi.org/10.1109/FOCS46700.2020.00088
Ben-Sasson, E., Carmon, D., Kopparty, S., Levit, D.: Scalable and transparent proofs over all large fields, via elliptic curves - (ECFFT part II). In: Kiltz, E., Vaikuntanathan, V. (eds.) TCC 2022, Part I. LNCS, vol. 13747, pp. 467–496. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-22318-1_17
Ben-Sasson, E., Carmon, D., Kopparty, S., Levit, D.: Elliptic curve fast Fourier transform (ECFFT) part I: low-degree extension in time O(n log n) over all finite fields. In: Bansal, N., Nagarajan, V. (eds.) Proceedings of the 2023 ACM-SIAM Symposium on Discrete Algorithms. SODA 2023, Florence, Italy, 22–25 January 2023, pp. 700–737. SIAM (2023). https://doi.org/10.1137/1.9781611977554.ch30
Bootle, J., Chiesa, A., Liu, S.: Zero-knowledge IOPs with linear-time prover and polylogarithmic-time verifier. In: Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT 2022, Part II. LNCS, vol. 13276, pp. 275–304. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-07085-3_10
Ben-Sasson, E., Chiesa, A., Spooner, N.: Interactive oracle proofs. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 31–60. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-5_2
Boneh, D., Drijvers, M., Neven, G.: Compact multi-signatures for smaller blockchains. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11273, pp. 435–464. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03329-3_15
Baird, L., et al.: Threshold signatures in the multiverse. In: 44th IEEE Symposium on Security and Privacy. SP 2023, San Francisco, CA, USA, 21–25 May 2023, pp. 1454–1470. IEEE (2023)
Block, A.R., Garreta, A., Katz, J., Thaler, J., Tiwari, P.R., Zając, M.: Fiat-Shamir security of FRI and related snarks. In: ASIACRYPT 2023 (2023). https://eprint.iacr.org/2023/1071
Ben-Sasson, E., Goldberg, L., Kopparty, S., Saraf, S.: DEEP-FRI: sampling outside the box improves soundness. In: Vidick, T. (ed.) ITCS 2020: 11th Innovations in Theoretical Computer Science Conference, vol. 151, pp. 5:1–5:32, Seattle, WA, USA, 12–14 January 2020. LIPIcs (2020). https://doi.org/10.4230/LIPIcs.ITCS.2020.5
Benabbas, S., Gennaro, R., Vahlis, Y.: Verifiable delegation of computation over large datasets. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 111–131. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_7
Benhamouda, F., Halevi, S.: Stambler, L.: Weighted secret sharing from wiretap channels. In: ITC 2023 (2023). https://eprint.iacr.org/2022/1578
Bhadauria, R., Hazay, C., Venkitasubramaniam, M., Wu, W., Zhang, Y.: Private polynomial commitments and applications to MPC. In: PKC 2023 (2023). https://eprint.iacr.org/2023/680
Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1_30
Bünz, B., Maller, M., Mishra, P., Tyagi, N., Vesely, P.: Proofs for inner pairing products and applications. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021. LNCS, vol. 13092, pp. 65–97. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92078-4_3
Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based on the gap-Diffie-Hellman-group signature scheme. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36288-6_3
Chen, B., Bünz, B., Boneh, D., Zhang, Z.: HyperPlonk: plonk with linear-time prover and high-degree custom gates. In: Hazay, C., Stam, M. (eds.) EUROCRYPT 2023, Part II. LNCS, vol. 14005, pp. 499–530. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30617-4_17
Canetti, R., Chen, Y., Holmgren, J., Lombardi, A., Rothblum, G.N., Rothblum, R.D., Wichs, D.: Fiat-Shamir: from practice to theory. In: Charikar, M., Cohen, E. (eds.) 51st Annual ACM Symposium on Theory of Computing, pp. 1082–1090, Phoenix, AZ, USA, 23–26 June 2019. ACM Press (2019). https://doi.org/10.1145/3313276.3316380
Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, N., Ward, N.: Marlin: preprocessing zkSNARKs with universal and updatable SRS. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp. 738–768. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1_26
Chaidos, P., Kiayias, A.: Mithril: stake-based threshold multisignatures. Cryptology ePrint Archive, Report 2021/916 (2021). https://eprint.iacr.org/2021/916
Chung, K.-M., Kalai, Y., Vadhan, S.: Improved delegation of computation using fully homomorphic encryption. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 483–501. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7_26
Chiesa, A., Lehmkuhl, R., Mishra, P., Zhang, Y.: Eos: efficient private delegation of zkSNARK provers. In: 32nd USENIX Security Symposium (USENIX Security 23), pp. 6453–6469, Anaheim, CA, August 2023. USENIX Association (2023). https://www.usenix.org/conference/usenixsecurity23/presentation/chiesa
Chiesa, A., Ojha, D., Spooner, N.: Fractal: post-quantum and transparent recursive proofs from holography. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp. 769–793. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1_27
Das, S., Camacho, P., Xiang, Z., Nieto, J., Bunz, B., Ren, L.: Threshold signatures from inner product argument: succinct, weighted, and multi-threshold. In: CCS 2023 (2023). https://eprint.iacr.org/2023/598
Das, S., Yurek, T., Xiang, Z., Miller, A.K., Kokoris-Kogias, L., Ren, L.: Practical asynchronous distributed key generation. In: 2022 IEEE Symposium on Security and Privacy, pp. 2518–2534, San Francisco, CA, USA, 22–26 May 2022. IEEE Computer Society Press (2022). https://doi.org/10.1109/SP46214.2022.9833584
ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO’84. LNCS, vol. 196, pp. 10–18. Springer, Heidelberg (1984). https://doi.org/10.1007/3-540-39568-7_2
Fiore, D., Gennaro, R., Pastro, V.: Efficiently verifiable computation on encrypted data. In: Ahn, G.-J., Yung, M., Li, N., (eds.) ACM CCS 2014: 21st Conference on Computer and Communications Security, pp. 844–855, Scottsdale, AZ, USA, 3–7 November 2014. ACM Press (2014). https://doi.org/10.1145/2660267.2660366
Fiore, D., Nitulescu, A., Pointcheval, D.: Boosting verifiable computation on encrypted data. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020. LNCS, vol. 12111, pp. 124–154. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45388-6_5
Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_12
Gentry, C., Fully homomorphic encryption using ideal lattices. In: Mitzenmacher, M. (ed.) 41st Annual ACM Symposium on Theory of Computing, pp. 169–178, Bethesda, MD, USA, 31 May–2 June 2009. ACM Press (2009). https://doi.org/10.1145/1536414.1536440
Garg, S., Goel, A., Jain, A., Policharla, G.-V., Sekar, S.: zkSaaS: Zero-knowledge SNARKs as a service. In: 32nd USENIX Security Symposium (USENIX Security 23), pp. 4427–4444, Anaheim, CA, 2023 August .USENIX Association (2023). https://www.usenix.org/conference/usenixsecurity23/presentation/garg
Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: outsourcing computation to untrusted workers. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 465–482. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7_25
Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_37
Garg, S., Goel, A., Wang, M.: How to prove statements obliviously? IACR Cryptology ePrint Archive, p. 1609 (2023). https://eprint.iacr.org/2023/1609
Green, M., Hall-Andersen, M., Hennenfent, E., Kaptchuk, G., Perez, B., Van Laer, G.: Efficient proofs of software exploitability for real-world processors. Proc. Privacy Enhanc. Technol. 2023(1), 627–640 (2023). https://doi.org/10.56553/popets-2023-0036
Gentry, C., Halevi, S., Lyubashevsky, V.: Practical non-interactive publicly verifiable secret sharing with thousands of parties. In: Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT 2022, Part I. LNCS, vol. 13275, pp. 458–487. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-06944-4_16
Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure distributed key generation for discrete-log based cryptosystems. J. Cryptol. 20(1), 51–83 (2007). https://doi.org/10.1007/s00145-006-0347-3
Garg, S., Jain, A., Mukherjee, P., Sinha, R., Wang, M., Zhang, Y.: Cryptography with weights: MPC, encryption and signatures. In: CRYPTO 2023 (2023). https://eprint.iacr.org/2022/1632
Garg, S., Jain, A., Mukherjee, P., Sinha, R., Wang, M., Zhang, Y.: hints: Threshold signatures with silent setup. In: IEEE S &P 2024 (2024). https://eprint.iacr.org/2023/567
Golovnev, A., Lee, J., Setty, S., Thaler, J., Wahby, R.S.: Brakedown: linear-time and post-quantum SNARKs for R1CS. Cryptology ePrint Archive, Report 2021/1043 (2021). https://eprint.iacr.org/2021/1043
Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8_19
Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 305–326. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_11
Groth, J.: Non-interactive distributed key generation and key resharing. Cryptology ePrint Archive, Report 2021/339 (2021). https://eprint.iacr.org/2021/339
Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 75–92. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_5
Gorbunov, S., Vaikuntanathan, V., Wichs, D.: Leveled fully homomorphic signatures from standard lattices. In: Servedio, R.A., Rubinfeld, R. (eds.) 47th Annual ACM Symposium on Theory of Computing, pp. 469–477, Portland, OR, USA, 14–17 June 2015. ACM Press (2015). https://doi.org/10.1145/2746539.2746576
Gabizon, A., Williamson, Z.J., Ciobotaru, O.: PLONK: permutations over Lagrange-bases for oecumenical noninteractive arguments of knowledge. Cryptology ePrint Archive, Report 2019/953 (2019). https://eprint.iacr.org/2019/953
Haböck, U.: A summary on the FRI low degree test. Cryptology ePrint Archive, Report 2022/1216 (2022). https://eprint.iacr.org/2022/1216
Kalodner, H.A., Goldfeder, S., Chen, X., Weinberg, S.M., Felten, E.W.: Arbitrum: scalable, private smart contracts. In: Enck, W., Felt, A.P. (eds.) USENIX Security 2018: 27th USENIX Security Symposium, pp. 1353–1370, Baltimore, MD, USA, 15–17 August 2018. USENIX Association (2018)
Kilian, J.: A note on efficient zero-knowledge proofs and arguments (extended abstract). In: 24th Annual ACM Symposium on Theory of Computing, pp. 723–732, Victoria, BC, Canada, 4–6 May 1992. ACM Press (1992). https://doi.org/10.1145/129712.129782
Kothapalli, A., Masserova, E., Parno, B.: A direct construction for asymptotically optimal zkSNARKs. Cryptology ePrint Archive, Report 2020/1318 (2020). https://eprint.iacr.org/2020/1318
Kokoris-Kogias, E., Malkhi, D., Spiegelman, A.: Asynchronous distributed key generation for computationally-secure randomness, consensus, and threshold signatures. In: Ligatti, J., Ou, X., Katz, J., Vigna, G.: (eds.) ACM CCS 2020: 27th Conference on Computer and Communications Security, pp. 1751–1767, Virtual Event, USA, 9–13 November 2020. ACM Press (2020). https://doi.org/10.1145/3372297.3423364
Kattis, A.A., Panarin, K., Vlasov, A.: RedShift: transparent SNARKs from list polynomial commitments. In: Yin, H., Stavrou, A., Cremers, C., Shi, E. (eds.) ACM CCS 2022: 29th Conference on Computer and Communications Security, pp. 1725–1737, Los Angeles, CA, USA, 7–11 November 2022. ACM Press (2022). https://doi.org/10.1145/3548606.3560657
Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polynomials and their applications. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 177–194. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8_11
Lee, J.: Dory: efficient, transparent arguments for generalised inner products and polynomial commitments. In: Nissim, K., Waters, B. (eds.) TCC 2021. LNCS, vol. 13043, pp. 1–34. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90453-1_1
Micali, S.: CS proofs (extended abstracts). In: 35th Annual Symposium on Foundations of Computer Science, pp. 436–453, Santa Fe, NM, USA, 20–22 November 1994. IEEE Computer Society Press (1994). https://doi.org/10.1109/SFCS.1994.365746
Maxwell, G., Poelstra, A., Seurin, Y., Wuille, P.: Simple Schnorr multi-signatures with applications to bitcoin. Des. Codes Cryptogr. 87(9), 2139–2164 (2019)
Micali, S., Reyzin, L., Vlachos, G., Wahby, R.S., Zeldovich, N.: Compact certificates of collective knowledge. In: 2021 IEEE Symposium on Security and Privacy, pp. 626–641, San Francisco, CA, USA, 24–27 May 2021. IEEE Computer Society Press (2021). https://doi.org/10.1109/SP40001.2021.00096
Nick, J., Ruffing, T., Seurin, Y.: MuSig2: simple two-round Schnorr multi-signatures. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12825, pp. 189–221. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84242-0_8
Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_16
Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1_9
Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly practical verifiable computation. In: 2013 IEEE Symposium on Security and Privacy, pp. 238–252, Berkeley, CA, USA, 19–22 May 2013. IEEE Computer Society Press (2013). https://doi.org/10.1109/SP.2013.47
Plonky2 (2021). https://github.com/mir-protocol/plonky2
Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Gabow, H.N., Fagin, R. (eds.) 37th Annual ACM Symposium on Theory of Computing, pp. 84–93, Baltimore, MA, USA, 22–24 May 2005. ACM Press (2005). https://doi.org/10.1145/1060590.1060603
Rathee, D., Policharla, G.V., Xie, T., Cottone, R., Song, D.: Zebra: anonymous credentials with practical on-chain verification and applications to KYC in DEFI. Cryptology ePrint Archive, Paper 2022/1286 (2022). https://eprint.iacr.org/2022/1286
Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, New York (1990). https://doi.org/10.1007/0-387-34805-0_22
Setty, S.: Spartan: efficient and general-purpose zkSNARKs without trusted setup. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12172, pp. 704–737. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56877-1_25
Shamir, A.: How to share a secret. Commun. Assoc. Comput. Mach. 22(11), 612–613 (1979)
Tomescu, A., et al.: Towards scalable threshold cryptosystems. In: 2020 IEEE Symposium on Security and Privacy, pp. 877–893, San Francisco, CA, USA, 18–21 May 2020. IEEE Computer Society Press (2020). https://doi.org/10.1109/SP40000.2020.00059
Wu, H., Zheng, W., Chiesa, A., Popa, R.A., Stoica, I.: DIZK: a distributed zero knowledge proof system. In: Enck, W., Felt, A.P. (eds.) USENIX Security 2018: 27th USENIX Security Symposium, pp. 675–692, Baltimore, MD, USA, 15–17 August 2018. USENIX Association (2018)
Xie, T., Zhang, Y., Song, D.: Orion: zero knowledge proof with linear prover time. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022, Part IV. LNCS, vol. 13510, pp. 299–328. Springer, Cham. (2022). https://doi.org/10.1007/978-3-031-15985-5_11
Xie, T., Zhang, J., Zhang, Y., Papamanthou, C., Song, D.: Libra: succinct zero-knowledge proofs with optimal prover computation. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 733–764. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8_24
Zhang, J., Fang, Z., Zhang, Y., Song, D.: Zero knowledge proofs for decision tree predictions and accuracy. In: Ligatti, J., Ou, X., Katz, J., Vigna, G. (eds.) ACM CCS 2020: 27th Conference on Computer and Communications Security, pp. 2039–2053, Virtual Event, USA, 9–13 November 2020. ACM Press (2020). https://doi.org/10.1145/3372297.3417278
ZkRollups. An incomplete guide to rollups (2021). https://vitalik.ca/general/2021/01/05/rollup.html
Zhang, J., et al.: Doubly efficient interactive proofs for general arithmetic circuits with linear prover time. In: Vigna, G., Shi, E. (eds.) ACM CCS 2021: 28th Conference on Computer and Communications Security, pp. 159–177, Virtual Event, Republic of Korea, 15–19 November 2021. ACM Press (2021). https://doi.org/10.1145/3460120.3484767
Acknowledgement
The authors would like to thank Dario Fiore, Ignacio Cascudo, Daniele Cozzo, and Paola de Perthuis for useful discussions on the security of verifying FHE delegation and also for bringing several related works to our attention. The authors would also like to thank Jiayi Kang and Frederik Vercauteren for their assistance in addressing an issue in the zkSNARK delegation protocol in a previous draft of this paper. The first and third authors are supported in part by DARPA under Agreement No. HR00112020026, AFOSR Award FA9550-19-1-0200, NSF CNS Award 1936826, and research grants by Visa Inc, BAIR Commons Meta Fund, Stellar Development Foundation, and a Bakar Fellows Spark Award.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 International Association for Cryptologic Research
About this paper
Cite this paper
Garg, S., Goel, A., Wang, M. (2024). How to Prove Statements Obliviously?. In: Reyzin, L., Stebila, D. (eds) Advances in Cryptology – CRYPTO 2024. CRYPTO 2024. Lecture Notes in Computer Science, vol 14929. Springer, Cham. https://doi.org/10.1007/978-3-031-68403-6_14
Download citation
DOI: https://doi.org/10.1007/978-3-031-68403-6_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-68402-9
Online ISBN: 978-3-031-68403-6
eBook Packages: Computer ScienceComputer Science (R0)