Nothing Special   »   [go: up one dir, main page]

Skip to main content

From Secrecy to Soundness: Efficient Verification via Secure Computation

(Extended Abstract)

  • Conference paper
Automata, Languages and Programming (ICALP 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6198))

Included in the following conference series:

Abstract

We study the problem of verifiable computation (VC) in which a computationally weak client wishes to delegate the computation of a function f on an input x to a computationally strong but untrusted server. We present new general approaches for constructing VC protocols, as well as solving the related problems of program checking and self-correcting. The new approaches reduce the task of verifiable computation to suitable variants of secure multiparty computation (MPC) protocols. In particular, we show how to efficiently convert the secrecy property of MPC protocols into soundness of a VC protocol via the use of a message authentication code (MAC). The new connections allow us to apply results from the area of MPC towards simplifying, unifying, and improving over previous results on VC and related problems.

In particular, we obtain the following concrete applications: (1) The first VC protocols for arithmetic computations which only make a black-box use of the underlying field or ring; (2) a non-interactive VC protocol for boolean circuits in the preprocessing model, conceptually simplifying and improving the online complexity of a recent protocol of Gennaro et al. (Cryptology ePrint Archive: Report 2009/547); (3) NC0 self-correctors for complete languages in the complexity class NC1 and various log-space classes, strengthening previous AC0 correctors of Goldwasser et al. (STOC 2008).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abadi, M., Feigenbaum, J., Kilian, J.: On hiding information from an oracle. In: STOC (1987)

    Google Scholar 

  2. Applebaum, B., Ishai, Y., Kushilevitz, E.: Computationally private randomizing polynomials and their applications. Computional Complexity 15(2), 115–162 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography in NC0. In: SICOMP, vol. 36(4), pp. 845–888 (2006)

    Google Scholar 

  4. Babai, L.: Trading group theory for randomness. In: STOC (1985)

    Google Scholar 

  5. Beaver, D., Feigenbaum, J.: Hiding instances in multioracle queries. In: Choffrut, C., Lengauer, T. (eds.) STACS 1990. LNCS, vol. 415. Springer, Heidelberg (1990)

    Google Scholar 

  6. Beimel, A., Gál, A.: On arithmetic branching programs. JCSS 59(2), 195–220 (1999)

    MATH  Google Scholar 

  7. Blum, M., Kannan, S.: Programs that check their work. In: STOC (1989)

    Google Scholar 

  8. Blum, M., Luby, M., Rubinfeld, R.: Program result checking against adaptive programs and in cryptographic settings. In: Distributed Computing and Crypthography: DIMACS Workshop (1990)

    Google Scholar 

  9. Blum, M., Luby, M., Rubinfeld, R.: Self-testing/correcting programs with applications to numerical problems. In: STOC (1990)

    Google Scholar 

  10. Buntrock, G., Damm, C., Hertrampf, U., Meinel, C.: Structure and importance of logspace-MOD-classes. In: Jantzen, M., Choffrut, C. (eds.) STACS 1991. LNCS, vol. 480. Springer, Heidelberg (1991)

    Chapter  Google Scholar 

  11. Chung, K.M., Kalai, Y.T., Vadhan, S.: Improved delegation of computation using fully homomorphic encryption (2010) (in submission)

    Google Scholar 

  12. Cramer, R., Fehr, S., Ishai, Y., Kushilevitz, E.: Efficient multi-party computation over rings. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  13. Damgård, I., Nielsen, J.: Universally composable efficient multiparty computation from threshold homomorphic encryption. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 247–264. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  14. Feigenbaum, J.: Locally random reductions in interactive complexity theory. In: Advances in Computational Complexity Theory. DIMACS Series on Discrete Mathematics and Theoretical Computer Science, vol. 13, pp. 73–98 (1993)

    Google Scholar 

  15. Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: Outsourcing computation to untrusted workers. Cryptology ePrint Archive, Report 2009/547 (2009), http://eprint.iacr.org/

  16. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC (2009)

    Google Scholar 

  17. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: STOC, vol. 7 (1987)

    Google Scholar 

  18. Goldwasser, S., Gutfreund, D., Healy, A., Kaufman, T., Rothblum, G.N.: Verifying and decoding in constant depth. In: STOC (2007)

    Google Scholar 

  19. Goldwasser, S., Gutfreund, D., Healy, A., Kaufman, T., Rothblum, G.N.: A (de)constructive approach to program checking. In: STOC (2008)

    Google Scholar 

  20. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation: interactive proofs for muggles. In: STOC (2008)

    Google Scholar 

  21. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. In: SICOMP, vol. 18 (1989)

    Google Scholar 

  22. Hohenberger, S., Lysyanskaya, A.: How to securely outsource cryptographic computations. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 264–282. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  23. Ishai, Y., Kushilevitz, E.: Randomizing polynomials: A new representation with applications to round-efficient secure computation. In: FOCS (2000)

    Google Scholar 

  24. Ishai, Y., Kushilevitz, E.: Perfect constant-round secure computation via perfect randomizing polynomials. In: ICALP (2002)

    Google Scholar 

  25. Ishai, Y., Prabhakaran, M., Sahai, A.: Secure arithmetic computation with no honest majority. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 294–314. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  26. Kalai, Y.T., Raz, R.: Probabilistically checkable arguments. In: Halevi, S. (ed.) Advances in Cryptology - CRYPTO 2009. LNCS, vol. 5677, pp. 143–159. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  27. Karchmer, M., Wigderson, A.: On span programs. In: Structure in Complexity Theory Conference (1993)

    Google Scholar 

  28. Lipton, R.J.: New directions in testing. In: Distributed Computing and Cryptography. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 2, pp. 191–202 (1991)

    Google Scholar 

  29. Mahajan, M., Vinay, V.: Determinant: combinatorics, algorithms and complexity. Chicago J. Theoret. Comput. Sci. (5) (1997)

    Google Scholar 

  30. Micali, S.: CS proofs (extended abstracts). In: FOCS (1994)

    Google Scholar 

  31. Rubinfeld, R.: Designing checkers for programs that run in parallel. Algorithmica 15(4), 287–301 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  32. Yao, A.C.: How to generate and exchange secrets. In: FOCS (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Applebaum, B., Ishai, Y., Kushilevitz, E. (2010). From Secrecy to Soundness: Efficient Verification via Secure Computation. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds) Automata, Languages and Programming. ICALP 2010. Lecture Notes in Computer Science, vol 6198. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14165-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14165-2_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14164-5

  • Online ISBN: 978-3-642-14165-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics