Abstract
The paper explores mathematical methods that differentiate regular and chaotic time series, specifically for identifying pathological fistulas. It proposes a noise-resistant method for classifying responding rows of normally and pathologically functioning fistulas. This approach is grounded in the hypothesis that laminar blood flow signifies normal function, while turbulent flow indicates pathology. The study explores two distinct methods for distinguishing chaotic from regular time series. The first method involves mapping the time series onto the entropy-complexity plane and subsequently comparing it to established clusters. The second method, introduced by the authors, constructs a concepts-objects graph using formal concept analysis. Both of these methods exhibit high efficiency in determining the state of the fistula.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Chan, L., et al.: AKI in hospitalized patients with COVID-19. J. Am. Soc. Nephrol. 32(1), 151–160 (2021)
Hill, N.R., et al.: Global prevalence of chronic kidney disease: a systematic review and meta-analysis. PLoS ONE 11(7), 1–18 (2016)
Liyanage, T., et al.: Worldwide access to treatment for end-stage kidney disease: a systematic review. The Lancet 385(9981), 1975–1982 (2015)
Burkhart, H.M., Cikrit, D.F.: Arteriovenous fistulae for hemodialysis. Semin. Vasc. Surg. 10(3), 162–165 (1997). PMID: 9304733
Hasuike, Y., et al.: Imbalance of coagulation and fibrinolysis can predict vascular access failure in patients on hemodialysis after vascular access intervention. J. Vasc. Surg. 69(1), 174-180.e2 (2019)
Ravani, P., et al.: Examining the association between hemodialysis access type and mortality: the role of access complications. Clin. J. Am. Soc. Nephrol. 12(6), 955–964 (2017)
Salman, L., Beathard, G.: Interventional nephrology: physical examination as a tool for surveillance for the hemodialysis arteriovenous access. Clin. J. Am. Soc. Nephrol. 8, 1220–1227 (2013). e onese ones
Sato, T.: New diagnostic method according to the acoustic analysis of the shunt blood vessel noise. Toin Univ. Yokohama Eng. Jpn. Soc. Dial. Ther. J. 2, 332–341 (2005)
Kokorozashi, N.: Analysis of the shunt sound frequency characteristic changes associated with shunt stenosis. Jpn. Soc. Dial. Ther. J. 3, 287–295 (2010)
Todo, A., Kadonaka, T., Yoshioka, M., Ueno, A., Mitani, M., Katsurao, H.: Frequency analysis of shunt sounds in the arteriovenous fistula on hemodialysis patients. In: Proceedings of the 6th International Conference on Soft Computing and Intelligent Systems, and the 13th International Symposium on Advanced Intelligence Systems (2012)
Remuzzi, A., Ene-Iordache, B.: Novel paradigms for dialysis vascular access: upstream hemodynamics and vascular remodeling in dialysis access stenosis. Clin. J. Am. Soc. Nephrol. 8, 2186–2193 (2013)
Brahmbhatt, A., Remuzzi, A., Franzoni, M., Misra, S.: The molecular mechanisms of hemodialysis vascular access failure. Kidney Int. 89, 303–316 (2016)
Badero, O.J., Salifu, M.O., Wasse, H., Work, J.: Frequency of swing-segment stenosis in referred dialysis patients with angiographically documented lesions. Am. J. Kidney Dis. 51, 93–98 (2008)
Lee, T., Barker, J., Allon, M.: Needle infiltration of arteriovenous fistulae in hemodialysis: risk factors and consequences. Am. J. Kidney Dis. 47, 1020–1026 (2006)
Du, Y.-C., Stephanus, A.: A novel classification technique of AVF stenosis evaluation using bilateral PPG analysis. Micromachines 7, 147 (2016)
Grochowina, M., Leniowska, L.,x Gala-Błądzińska, L., The prototype device for noninvasive diagnosis of AVF condition using machine learning methods. Sci. Rep. 10, 16387 (2020)
Lopes, I., Sousa, F., Moreira, E., Cardoso, J.: Smartphone-based remote monitoring solution for heart failure patients. Stud. Health Technol. Inform. 261, 109–114 (2019)
Raghavan, U., Nandini, R.A., Soundar, K.: Near linear time algorithm to detect community structures in large-scale networks. Phys. Rev. E 76(3), 036106 (2007)
Navarro, E., Prade, H., Gaume, B.: Clustering sets of objects using concepts-objects bipartite graphs. In: Hüllermeier, E., Link, S., Fober, T., Seeger, B. (eds.) SUM 2012. LNCS (LNAI), vol. 7520, pp. 420–432. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33362-0_32
Buzmakov, A., Egho, E., Jay, N., Kuznetsov, S., Napoli, A., Raïssi, C.: On mining complex sequential data by means of FCA and pattern structures. Int. J. Gener. Syst. 45, 135–159 (2015)
Gromov, V.A., Lukyanchenko, P.P., Beschastnov, Y.N., Tomashchuk, K.K.: Time Ser. Struct. Anal. Number Law Cases. Proc. Cybernet. 4(48), 37–48 (2022)
Le Guen, V., Thome, N.: Probabilistic time series forecasting with shape and temporal diversity. In: NeurIPS (2020)
Liu, P., Mahmood, T., Ali, Z.: The cross-entropy and improved distance measureas for complex q-rung orthopair hesitant fuzzy sets and their applications in multi-criteria decision-making. Complex Intell. Syst. 8, 1167–1186 (2022). https://doi.org/10.1007/s40747-021-00551-2
Sangma, J.W., Sarkar, M., Pal, V., et al.: Hierarchical clustering for multiple nominal data streams with evolving behaviour. Complex Intell. Syst. 8, 1737–1761 (2022). https://doi.org/10.1007/s40747-021-00634-0
Rosenstein, M.T., Collins, J.J., De Luca, C.J.: Reconstruction expansion as a geometry-based framework for choosing proper delay times. Physica D 73, 82–98 (1994)
Gottwald, G.A., Melbourne, I.: A new test for chaos in deterministic systems. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 460, 603–611 (2004)
Gottwald, G.A., Falconer, I.S., Wormnes, K.: Application of the 0–1 test for chaos to experimental data. SIAM J. Appl. Dyn. Syst. 6(2), 395–402 (2007)
Gottwald, G.A., Melbourne, I.: The 0-1 test for chaos: a review. In: Skokos, C.H., Gottwald, G.A., Laskar, J. (eds.) Chaos Detection and Predictability. LNP, vol. 915, pp. 221–247. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-48410-4_7
Rosso, O.A., Carpi, L.C., Saco, P.M., Gómez Ravetti, M., Plastino, A., Larrondo, H.A.: Causality and the entropy-complexity plane: robustness and missing ordinal patterns. Physica A Stat. Mech. Appl. 391(1), 42–55 (2012)
Bandt, C., Pompe, B.: Permutation entropy: a natural complexity measure for time series. Phys. Rev. Lett. 88, 174102 (2002). https://doi.org/10.1103/PhysRevLett.88.174102
Zanin, M.: Forbidden patterns in financial time series. Chaos 18(1), 013119 (2008). https://doi.org/10.1063/1.2841197. PMID: 18377070
Zunino, L., Zanin, M., Tabak, B.M., Pérez, D., Rosso, O.A.: Forbidden patterns, permutation entropy and stock market inefficiency. Phys. A 388, 2854–2864 (2009)
Benettin, G., Galgani, L., Giorgilli, A., et al.: Lyapunov Characteristic Exponents for smooth dynamical systems and for hamiltonian systems; a method for computing all of them. Part 1: Theory. Meccanica 15, 9–20 (1980). https://doi.org/10.1007/BF02128236
Wolf, A., Swift, J.B., Swinney, H.L., Vastano, JA.: Determining Lyapunov exponents from a time series. Physica D Nonlinear Phenomena 16(3), 285–317 (1985). https://doi.org/10.1016/0167-2789(85)90011-9. ISSN 0167-2789
Ouyang, G., Li, X., Dang, C., Richards, D.A.: Deterministic dynamics of neural activity during absence seizures in rats. Phys. Rev. E 79, 041146 (2009)
EA-56137: Application for registration of a database “Registry of data on the condition of vascular access in patients undergoing hemodialysis.”
EA-56151: Application for registration of a computer program “Mobile application for collection, processing, and storage of data in the registry for the classification of vascular access status for hemodialysis”
Aggarwal, C.C., Reddy, C.K.: Data Clustering: Algorithms and Applications, 1st edn. Chapman and Hall/CRC, New York (2014)
Wishart, D.: A numerical classification methods for deriving natural classes. Nature 221, 97–98 (1969)
Thrun, M.C., Ultsch, A.: Using projection-based clustering to find distance- and density-based clusters in high-dimensional data. J. Classif. 38, 280–312 (2020)
Lapko, A.V., Chentsov, S.V.: Nonparametric Information Processing Systems. Nauka (2000)
Gromov, V.A., Borisenko, E.A.: Predictive clustering on non-successive observations for multi-step ahead chaotic time series prediction. Neural Comput. Appl. 2, 1827–1838 (2015)
Malindretos, P., Liaskos, C., Bamidis, P., Chryssogonidis, I., Lasaridis, A., Nikolaidis, P.: Computer-assisted sound analysis of AVF in hemodialysis patients. Int. J. Artif. Organs 37 (2013). https://doi.org/10.5301/ijao.5000262
Ota, K., Nishiura, Y., Ishihara, S., Adachi, H., Yamamoto, T., Hamano, T.: Evaluation of hemodialysis arteriovenous bruit by deep learning. Sensors (Basel, Switzerland) 20(17), 4852 (2020)
Kordzadeh, A., Esfahlani, S.S.: The role of artificial intelligence in the prediction of functional maturation of AVF. Ann. Vasc. Dis. 12(1), 44–49 (2019). https://doi.org/10.3400/avd.oa.18-00129
Acknowledgements
This paper is an output of a research project implemented as part of the Basic Research Program at the National Research University Higher School of Economics (HSE University).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Gromov, V.A., Zvorykina, E.I., Beschastnov, Y.N., Sohrabi, M. (2024). Date-Driven Approach for Identifying State of Hemodialysis Fistulas: Entropy-Complexity and Formal Concept Analysis. In: Ignatov, D.I., et al. Recent Trends in Analysis of Images, Social Networks and Texts. AIST 2023. Communications in Computer and Information Science, vol 1905. Springer, Cham. https://doi.org/10.1007/978-3-031-67008-4_19
Download citation
DOI: https://doi.org/10.1007/978-3-031-67008-4_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-67007-7
Online ISBN: 978-3-031-67008-4
eBook Packages: Computer ScienceComputer Science (R0)