Nothing Special   »   [go: up one dir, main page]

Skip to main content

Date-Driven Approach for Identifying State of Hemodialysis Fistulas: Entropy-Complexity and Formal Concept Analysis

  • Conference paper
  • First Online:
Recent Trends in Analysis of Images, Social Networks and Texts (AIST 2023)

Abstract

The paper explores mathematical methods that differentiate regular and chaotic time series, specifically for identifying pathological fistulas. It proposes a noise-resistant method for classifying responding rows of normally and pathologically functioning fistulas. This approach is grounded in the hypothesis that laminar blood flow signifies normal function, while turbulent flow indicates pathology. The study explores two distinct methods for distinguishing chaotic from regular time series. The first method involves mapping the time series onto the entropy-complexity plane and subsequently comparing it to established clusters. The second method, introduced by the authors, constructs a concepts-objects graph using formal concept analysis. Both of these methods exhibit high efficiency in determining the state of the fistula.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chan, L., et al.: AKI in hospitalized patients with COVID-19. J. Am. Soc. Nephrol. 32(1), 151–160 (2021)

    Article  Google Scholar 

  2. Hill, N.R., et al.: Global prevalence of chronic kidney disease: a systematic review and meta-analysis. PLoS ONE 11(7), 1–18 (2016)

    Article  Google Scholar 

  3. Liyanage, T., et al.: Worldwide access to treatment for end-stage kidney disease: a systematic review. The Lancet 385(9981), 1975–1982 (2015)

    Article  Google Scholar 

  4. Burkhart, H.M., Cikrit, D.F.: Arteriovenous fistulae for hemodialysis. Semin. Vasc. Surg. 10(3), 162–165 (1997). PMID: 9304733

    Google Scholar 

  5. Hasuike, Y., et al.: Imbalance of coagulation and fibrinolysis can predict vascular access failure in patients on hemodialysis after vascular access intervention. J. Vasc. Surg. 69(1), 174-180.e2 (2019)

    Article  Google Scholar 

  6. Ravani, P., et al.: Examining the association between hemodialysis access type and mortality: the role of access complications. Clin. J. Am. Soc. Nephrol. 12(6), 955–964 (2017)

    Article  Google Scholar 

  7. Salman, L., Beathard, G.: Interventional nephrology: physical examination as a tool for surveillance for the hemodialysis arteriovenous access. Clin. J. Am. Soc. Nephrol. 8, 1220–1227 (2013). e onese ones

    Google Scholar 

  8. Sato, T.: New diagnostic method according to the acoustic analysis of the shunt blood vessel noise. Toin Univ. Yokohama Eng. Jpn. Soc. Dial. Ther. J. 2, 332–341 (2005)

    Google Scholar 

  9. Kokorozashi, N.: Analysis of the shunt sound frequency characteristic changes associated with shunt stenosis. Jpn. Soc. Dial. Ther. J. 3, 287–295 (2010)

    Google Scholar 

  10. Todo, A., Kadonaka, T., Yoshioka, M., Ueno, A., Mitani, M., Katsurao, H.: Frequency analysis of shunt sounds in the arteriovenous fistula on hemodialysis patients. In: Proceedings of the 6th International Conference on Soft Computing and Intelligent Systems, and the 13th International Symposium on Advanced Intelligence Systems (2012)

    Google Scholar 

  11. Remuzzi, A., Ene-Iordache, B.: Novel paradigms for dialysis vascular access: upstream hemodynamics and vascular remodeling in dialysis access stenosis. Clin. J. Am. Soc. Nephrol. 8, 2186–2193 (2013)

    Article  Google Scholar 

  12. Brahmbhatt, A., Remuzzi, A., Franzoni, M., Misra, S.: The molecular mechanisms of hemodialysis vascular access failure. Kidney Int. 89, 303–316 (2016)

    Article  Google Scholar 

  13. Badero, O.J., Salifu, M.O., Wasse, H., Work, J.: Frequency of swing-segment stenosis in referred dialysis patients with angiographically documented lesions. Am. J. Kidney Dis. 51, 93–98 (2008)

    Article  Google Scholar 

  14. Lee, T., Barker, J., Allon, M.: Needle infiltration of arteriovenous fistulae in hemodialysis: risk factors and consequences. Am. J. Kidney Dis. 47, 1020–1026 (2006)

    Article  Google Scholar 

  15. Du, Y.-C., Stephanus, A.: A novel classification technique of AVF stenosis evaluation using bilateral PPG analysis. Micromachines 7, 147 (2016)

    Article  Google Scholar 

  16. Grochowina, M., Leniowska, L.,x Gala-Błądzińska, L., The prototype device for noninvasive diagnosis of AVF condition using machine learning methods. Sci. Rep. 10, 16387 (2020)

    Google Scholar 

  17. Lopes, I., Sousa, F., Moreira, E., Cardoso, J.: Smartphone-based remote monitoring solution for heart failure patients. Stud. Health Technol. Inform. 261, 109–114 (2019)

    Google Scholar 

  18. Raghavan, U., Nandini, R.A., Soundar, K.: Near linear time algorithm to detect community structures in large-scale networks. Phys. Rev. E 76(3), 036106 (2007)

    Article  Google Scholar 

  19. Navarro, E., Prade, H., Gaume, B.: Clustering sets of objects using concepts-objects bipartite graphs. In: Hüllermeier, E., Link, S., Fober, T., Seeger, B. (eds.) SUM 2012. LNCS (LNAI), vol. 7520, pp. 420–432. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33362-0_32

    Chapter  Google Scholar 

  20. Buzmakov, A., Egho, E., Jay, N., Kuznetsov, S., Napoli, A., Raïssi, C.: On mining complex sequential data by means of FCA and pattern structures. Int. J. Gener. Syst. 45, 135–159 (2015)

    Article  MathSciNet  Google Scholar 

  21. Gromov, V.A., Lukyanchenko, P.P., Beschastnov, Y.N., Tomashchuk, K.K.: Time Ser. Struct. Anal. Number Law Cases. Proc. Cybernet. 4(48), 37–48 (2022)

    Google Scholar 

  22. Le Guen, V., Thome, N.: Probabilistic time series forecasting with shape and temporal diversity. In: NeurIPS (2020)

    Google Scholar 

  23. Liu, P., Mahmood, T., Ali, Z.: The cross-entropy and improved distance measureas for complex q-rung orthopair hesitant fuzzy sets and their applications in multi-criteria decision-making. Complex Intell. Syst. 8, 1167–1186 (2022). https://doi.org/10.1007/s40747-021-00551-2

    Article  Google Scholar 

  24. Sangma, J.W., Sarkar, M., Pal, V., et al.: Hierarchical clustering for multiple nominal data streams with evolving behaviour. Complex Intell. Syst. 8, 1737–1761 (2022). https://doi.org/10.1007/s40747-021-00634-0

    Article  Google Scholar 

  25. Rosenstein, M.T., Collins, J.J., De Luca, C.J.: Reconstruction expansion as a geometry-based framework for choosing proper delay times. Physica D 73, 82–98 (1994)

    Article  MathSciNet  Google Scholar 

  26. Gottwald, G.A., Melbourne, I.: A new test for chaos in deterministic systems. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 460, 603–611 (2004)

    Google Scholar 

  27. Gottwald, G.A., Falconer, I.S., Wormnes, K.: Application of the 0–1 test for chaos to experimental data. SIAM J. Appl. Dyn. Syst. 6(2), 395–402 (2007)

    Article  MathSciNet  Google Scholar 

  28. Gottwald, G.A., Melbourne, I.: The 0-1 test for chaos: a review. In: Skokos, C.H., Gottwald, G.A., Laskar, J. (eds.) Chaos Detection and Predictability. LNP, vol. 915, pp. 221–247. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-48410-4_7

    Chapter  Google Scholar 

  29. Rosso, O.A., Carpi, L.C., Saco, P.M., Gómez Ravetti, M., Plastino, A., Larrondo, H.A.: Causality and the entropy-complexity plane: robustness and missing ordinal patterns. Physica A Stat. Mech. Appl. 391(1), 42–55 (2012)

    Article  Google Scholar 

  30. Bandt, C., Pompe, B.: Permutation entropy: a natural complexity measure for time series. Phys. Rev. Lett. 88, 174102 (2002). https://doi.org/10.1103/PhysRevLett.88.174102

  31. Zanin, M.: Forbidden patterns in financial time series. Chaos 18(1), 013119 (2008). https://doi.org/10.1063/1.2841197. PMID: 18377070

  32. Zunino, L., Zanin, M., Tabak, B.M., Pérez, D., Rosso, O.A.: Forbidden patterns, permutation entropy and stock market inefficiency. Phys. A 388, 2854–2864 (2009)

    Article  Google Scholar 

  33. Benettin, G., Galgani, L., Giorgilli, A., et al.: Lyapunov Characteristic Exponents for smooth dynamical systems and for hamiltonian systems; a method for computing all of them. Part 1: Theory. Meccanica 15, 9–20 (1980). https://doi.org/10.1007/BF02128236

  34. Wolf, A., Swift, J.B., Swinney, H.L., Vastano, JA.: Determining Lyapunov exponents from a time series. Physica D Nonlinear Phenomena 16(3), 285–317 (1985). https://doi.org/10.1016/0167-2789(85)90011-9. ISSN 0167-2789

  35. Ouyang, G., Li, X., Dang, C., Richards, D.A.: Deterministic dynamics of neural activity during absence seizures in rats. Phys. Rev. E 79, 041146 (2009)

    Article  Google Scholar 

  36. EA-56137: Application for registration of a database “Registry of data on the condition of vascular access in patients undergoing hemodialysis.”

    Google Scholar 

  37. EA-56151: Application for registration of a computer program “Mobile application for collection, processing, and storage of data in the registry for the classification of vascular access status for hemodialysis”

    Google Scholar 

  38. Aggarwal, C.C., Reddy, C.K.: Data Clustering: Algorithms and Applications, 1st edn. Chapman and Hall/CRC, New York (2014)

    Google Scholar 

  39. Wishart, D.: A numerical classification methods for deriving natural classes. Nature 221, 97–98 (1969)

    Article  Google Scholar 

  40. Thrun, M.C., Ultsch, A.: Using projection-based clustering to find distance- and density-based clusters in high-dimensional data. J. Classif. 38, 280–312 (2020)

    Article  MathSciNet  Google Scholar 

  41. Lapko, A.V., Chentsov, S.V.: Nonparametric Information Processing Systems. Nauka (2000)

    Google Scholar 

  42. Gromov, V.A., Borisenko, E.A.: Predictive clustering on non-successive observations for multi-step ahead chaotic time series prediction. Neural Comput. Appl. 2, 1827–1838 (2015)

    Article  Google Scholar 

  43. Malindretos, P., Liaskos, C., Bamidis, P., Chryssogonidis, I., Lasaridis, A., Nikolaidis, P.: Computer-assisted sound analysis of AVF in hemodialysis patients. Int. J. Artif. Organs 37 (2013). https://doi.org/10.5301/ijao.5000262

  44. Ota, K., Nishiura, Y., Ishihara, S., Adachi, H., Yamamoto, T., Hamano, T.: Evaluation of hemodialysis arteriovenous bruit by deep learning. Sensors (Basel, Switzerland) 20(17), 4852 (2020)

    Article  Google Scholar 

  45. Kordzadeh, A., Esfahlani, S.S.: The role of artificial intelligence in the prediction of functional maturation of AVF. Ann. Vasc. Dis. 12(1), 44–49 (2019). https://doi.org/10.3400/avd.oa.18-00129

    Article  Google Scholar 

Download references

Acknowledgements

This paper is an output of a research project implemented as part of the Basic Research Program at the National Research University Higher School of Economics (HSE University).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasilii A. Gromov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gromov, V.A., Zvorykina, E.I., Beschastnov, Y.N., Sohrabi, M. (2024). Date-Driven Approach for Identifying State of Hemodialysis Fistulas: Entropy-Complexity and Formal Concept Analysis. In: Ignatov, D.I., et al. Recent Trends in Analysis of Images, Social Networks and Texts. AIST 2023. Communications in Computer and Information Science, vol 1905. Springer, Cham. https://doi.org/10.1007/978-3-031-67008-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-67008-4_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-67007-7

  • Online ISBN: 978-3-031-67008-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics