Nothing Special   »   [go: up one dir, main page]

Skip to main content

Bayesian Shannon Entropy for Assessing Patient’s Data Interrelation in Medical Applications

  • Conference paper
  • First Online:
9th European Medical and Biological Engineering Conference (EMBEC 2024)

Abstract

This research explores the application of a proposed interrelation index for analyzing patient data in medical contexts. The patient data is represented as either quantitative time series or qualitative sequences. Conditional Bayesian inference rules were developed for both types of data. Shannon entropy was employed for the initial dataset, while Bayesian rules were applied to the randomized dataset. The interrelation index, calculated as the ratio between Bayesian Shannon entropy of the randomized dataset and Shannon entropy of the initial dataset, serves as an indicator of data coherence in time series or sequences. The medical applications of this interrelation index were demonstrated through the analysis of Heart Rate Variability (HRV) in patients with various cardiac diseases and the DNA sequences of a chronic lymphocytic leukemia (CLL) patient with different mutation statuses of the immunoglobulin heavy chain (IGHV) gene. Comparative analyses with normal cases were provided for both medical applications. In essence, the study highlights the utility of Bayesian inference in enhancing the sensitivity and accuracy of entropy-based analysis for quantitative time series and sequences of qualitative (nominal) variables.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3), 379–423 (1948). https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

    Article  MathSciNet  Google Scholar 

  2. Costa, M., Goldberger, A.L., Peng, C.K.: Multiscale entropy analysis of biological signals. Phys. Rev. E 71(2), 021906 (2005). https://doi.org/10.1103/PhysRevE.71.021906

    Article  MathSciNet  Google Scholar 

  3. Humeau-Heurtier, A.: Entropy analysis in health informatics. In: Ahad, M.A.R., Ahmed, M.U. (eds.) Signal Processing Techniques for Computational Health Informatics, pp. 123–143. Springer International Publishing, Cham (2021). https://doi.org/10.1007/978-3-030-54932-9_5

    Chapter  Google Scholar 

  4. Bhavsar, R., Helian, N., Sun, Y., Davey, N., Steffert, T., Mayor, David: Efficient Methods for calculating sample entropy in time series data analysis. Procedia Comput. Sci. 145, 97–104 (2018). https://doi.org/10.1016/j.procs.2018.11.016

    Article  Google Scholar 

  5. Sherwin, W.B.: Entropy and information approaches to genetic diversity and its expression: genomic geography. Entropy 12, 1765–1798 (2010). https://doi.org/10.3390/e12071765

    Article  MathSciNet  Google Scholar 

  6. Chanda, P., Costa, E., Hu, J., Sukumar, S., Van Hemert, J., Walia, R.: Information theory in computational biology: where we stand today. Entropy 22, 627 (2020). https://doi.org/10.3390/e22060627

    Article  MathSciNet  Google Scholar 

  7. Task force of the European society of cardiology and the North American society of pacing and electrophysiology. Heart rate variability – standards of measurement, physiological interpretation, and clinical use. Circulation 93(5), 1043–1065 (1996)

    Google Scholar 

  8. Iabluchanskyi, M., Martynenko, O., Budreiko, N., Yabluchanskiy, A.: Heart Rate Variability for medical scientists and doctors. Kharkiv, Karazin Univer. Press, 131 p (2022). https://doi.org/10.13140/RG.2.2.32435.91685/1

  9. Goldberger, A., Amaral, L., Glass, L., Hausdorff, J., Ivanov, P.C., Mark, R., Stanley, H.E.: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101(23), e215–e220 (2000)

    Article  Google Scholar 

  10. Moody, G.B., Mark, R.G.: A new method for detecting atrial fibrillation using R-R intervals. Comput. Cardiol. 10, 227–230 (1983)

    Google Scholar 

  11. Martynenko, A.V., Pastor, X.D., Frid, S.A., Rojas, J.G., Maliarova, L.V.: Entropy of DNA sequences and leukemia patients mortality. J. Karazin Kharkiv Nat. Univer., Medicine 45, 12–23 (2022). https://doi.org/10.26565/2313-6693-2022-45-02

    Article  Google Scholar 

  12. Martynenko, A., Pastor, X., Frid, S., Gil, J., Borrat, X.: Information Entropy of DNA Sequences for Survival Analysis. Preprints.org, 2023030414 (2023). https://doi.org/10.20944/preprints202303.0414.v1

  13. Nadeu, F., et al.: IGLV3-21R110 identifies an aggressive biological subtype of chronic lymphocytic leukemia with intermediate epigenetics. Blood 137(21), 2935–2946 (2021). https://doi.org/10.1182/blood.2020008311

    Article  Google Scholar 

  14. Nadeu, F., et al.: Clinical impact of the subclonal architecture and mutational complexity in chronic lymphocytic leukemia. Leukemia 32(3), 645–653 (2018). https://doi.org/10.1038/leu.2017.291

    Article  Google Scholar 

  15. Puente, X.S., et al.: Non-coding recurrent mutations in chronic lymphocytic leukaemia. Nature 526(7574), 519–524 (2015). https://doi.org/10.1038/nature14666

    Article  Google Scholar 

  16. Adderson, E., Shackelford, P., Carroll, W.: Somatic hypermutation in t-independent (TI) and t-dependent (TD) immune responses. • 38. Pediatric Res. 39, 9–9 (1996). https://doi.org/10.1203/00006450-199604001-00057

    Article  Google Scholar 

  17. Ecker, S., Pancaldi, V., Ric, D., Valencia, A.: Higher gene expression variability in the more aggressive subtype of chronic lymphocytic leukemia. Genome Med. 7(1), 8 (2015). https://doi.org/10.1186/s13073-014-0125-z

    Article  Google Scholar 

  18. Terrin, L., et al.: Telomerase expression in B-cell chronic lymphocytic leukemia predicts survival and delineates subgroups of patients with the same IGHV mutation status and different outcome. Leukemia 21(5), 965–972 (2007). https://doi.org/10.1038/sj.leu.2404607

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Martynenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Martynenko, A., Pastor, X. (2024). Bayesian Shannon Entropy for Assessing Patient’s Data Interrelation in Medical Applications. In: Jarm, T., Šmerc, R., Mahnič-Kalamiza, S. (eds) 9th European Medical and Biological Engineering Conference. EMBEC 2024. IFMBE Proceedings, vol 112. Springer, Cham. https://doi.org/10.1007/978-3-031-61625-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-61625-9_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-61624-2

  • Online ISBN: 978-3-031-61625-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics