Nothing Special   »   [go: up one dir, main page]

Skip to main content

T1 and T2 Mapping Reconstruction Based on Conditional DDPM

  • Conference paper
  • First Online:
Statistical Atlases and Computational Models of the Heart. Regular and CMRxRecon Challenge Papers (STACOM 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14507))

  • 587 Accesses

Abstract

Cardiac magnetic resonance imaging (CMR) has emerged as a crucial imaging modality for the diagnosis of cardiac diseases. T1 and T2 mapping are essential techniques for detecting cardiomyopathies. However, the imaging speed is noticeably slow and conventional mapping models often struggle to produce accurate results when the imaging process is compromised. To overcome this limitation, accelerated mapping techniques have been developed to reduce motion artifacts and enhance image quality. In this study, we propose a novel reconstruction method based on a conditional denoising diffusion probabilistic model (CDDPM). By utilizing accelerated mapping as a conditioning factor and iteratively applying a denoising process, we generate refined T1 and T2 maps from initially corrupted data consisting of pure Gaussian noise. The experimental results of the CMR Reconstruction Challenge demonstrate the effectiveness of our proposed method. Objective indicators show significant improvements, indicating enhanced image quality. Furthermore, our method successfully improves the texture quality of the images, providing more detailed and accurate information for cardiomyopathy diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hundley, W.G., Bluemke, D.A., Finn, J.P., et al.: ACCF/ACR/AHA/NASCI/ SCMR 2010 expert consensus document on cardiovascular magnetic resonance: a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents. J. Am. Coll. Cardiol. 55(23), 2614–2662 (2010)

    Article  Google Scholar 

  2. Pruessmann, K.P., Weiger, M., Scheidegger, M.B., et al.: SENSE: sensitivity encoding for fast MRI. Magn. Reson. Med. Official J. Int. Soc. Magn. Reson. Med. 42(5), 952–962 (1999)

    Article  Google Scholar 

  3. Griswold, M.A., Jakob, P.M., Heidemann, R.M., et al.: Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn. Reson. Med. Official J. Int. Soc. Magn. Reson. Med. 47(6), 1202–1210 (2002)

    Article  Google Scholar 

  4. Lustig, M., Pauly, J.M.: SPIRiT: iterative self-consistent parallel imaging reconstruction from arbitrary k-space. Magn. Reson. Med. 64(2), 457–471 (2010)

    Article  Google Scholar 

  5. Uecker, M., Lai, P., Murphy, M.J., et al.: ESPIRiT-an eigenvalue approach to autocalibrating parallel MRI: where SENSE meets GRAPPA. Magn. Reson. Med. 71(3), 990–1001 (2014)

    Article  Google Scholar 

  6. Qin, C., Schlemper, J., Caballero, J., et al.: Convolutional recurrent neural networks for dynamic MR image reconstruction. IEEE Trans. Med. Imaging 38(1), 280–290 (2018). https://doi.org/10.1109/TMI.2018.2863670

    Article  Google Scholar 

  7. Qin, C., Duan, J., Hammernik, K., et al.: Complementary time-frequency domain networks for dynamic parallel MR image reconstruction. Magn. Reson. Med. 86(6), 3274–3291 (2021). https://doi.org/10.1002/mrm.28917

    Article  Google Scholar 

  8. Lyu, J., Sui, B., Wang, C., et al.: DuDoCAF: dual-domain cross-attention fusion with recurrent transformer for fast multi-contrast MR imaging. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13436, pp. 474–484. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16446-0_45

    Chapter  Google Scholar 

  9. Lyu, J., Li, G., Wang, C., et al.: Region-focused multi-view transformer-based generative adversarial network for cardiac cine MRI reconstruction. Med. Image Anal. 85, 102760 (2023). https://doi.org/10.1016/j.media.2023.102760

    Article  Google Scholar 

  10. Lyu, J., Tong, X., Wang, C.: Parallel imaging with a combination of SENSE and generative adversarial networks (GAN). Quant. Imaging Med. Surg. 10(12), 2260–2273 (2020). https://doi.org/10.21037/qims-20-518

    Article  Google Scholar 

  11. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. In: Proceedings of International Conference on Learning Representations, ICLR, pp. 1–14. Springer, Cham (2014)

    Google Scholar 

  12. Goodfellow, I., Pouget-Abadie, J., Mirza, M., et al.: Generative adversarial networks. Commun. ACM 63(11), 139–144 (2020)

    Article  MathSciNet  Google Scholar 

  13. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. Adv. Neural. Inf. Process. Syst. 33, 6840–6851 (2020)

    Google Scholar 

  14. Song, Y., Ermon, S.: Generative modeling by estimating gradients of the data distribution. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  15. Jalal, A., Arvinte, M., Daras, G., et al.: Robust compressed sensing MRI with deep generative priors. Adv. Neural. Inf. Process. Syst. 34, 14938–14954 (2021)

    Google Scholar 

  16. Chung, H., Ye, J.C.: Score-based diffusion models for accelerated MRI. Med. Image Anal. 80, 102479 (2022)

    Article  Google Scholar 

  17. Wang, C., Lyu, J., Wang, S., et al.: CMRxRecon: an open cardiac MRI dataset for the competition of accelerated image reconstruction. arXiv preprint arXiv:2309.10836 (2023)

  18. Blei, D.M., Kucukelbir, A., McAuliffe, J.D.: Variational inference: a review for statisticians. J. Am. Stat. Assoc. 112(518), 859–877 (2017)

    Article  MathSciNet  Google Scholar 

  19. Kwon, K., Kim, D., Park, H.W.: A parallel MR imaging method using multilayer perceptron. Med. Phys. 44(12), 6209–6224 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Tian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Y., Zhao, L., Tian, Y., Zhao, S. (2024). T1 and T2 Mapping Reconstruction Based on Conditional DDPM. In: Camara, O., et al. Statistical Atlases and Computational Models of the Heart. Regular and CMRxRecon Challenge Papers. STACOM 2023. Lecture Notes in Computer Science, vol 14507. Springer, Cham. https://doi.org/10.1007/978-3-031-52448-6_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-52448-6_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-52447-9

  • Online ISBN: 978-3-031-52448-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics