Nothing Special   »   [go: up one dir, main page]

Skip to main content

k-t Self-consistency Diffusion: A Physics-Informed Model for Dynamic MR Imaging

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 (MICCAI 2024)

Abstract

Diffusion models exhibit promising prospects in magnetic resonance (MR) image reconstruction due to their robust image generation and generalization capabilities. However, current diffusion models are predominantly customized for 2D image reconstruction tasks. When addressing dynamic MR imaging (dMRI), the challenge lies in accurately generating 2D images while simultaneously adhering to the temporal direction and matching the motion patterns of the scanned regions. In dynamic parallel imaging, motion patterns can be characterized through the self-consistency of k-t data. Motivated by this observation, we propose to design a diffusion model that aligns with k-t self-consistency. Specifically, following a discrete iterative algorithm to optimize k-t self-consistency, we extend it to a continuous formulation, thereby designing a stochastic diffusion equation in line with k-t self-consistency. Finally, by incorporating the score-matching method to estimate prior terms, we construct a diffusion model for dMRI. Experimental results on a cardiac dMRI dataset showcase the superiority of our method over current state-of-the-art techniques. Our approach exhibits remarkable reconstruction potential even at extremely high acceleration factors, reaching up to 24X, and demonstrates robust generalization for dynamic data with temporally shuffled frames.

Y. Liu and Z. Cui—Contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahmad, R., Xue, H., Giri, S., Ding, Y., Craft, J., Simonetti, O.P.: Variable density incoherent spatiotemporal acquisition (vista) for highly accelerated cardiac MRI. Magn. Reson. Med. 74(5), 1266–1278 (2015)

    Article  Google Scholar 

  2. Anderson, B.D.: Reverse-time diffusion equation models. Stochast. Proc. Appl. 12(3), 313–326 (1982)

    Article  MathSciNet  Google Scholar 

  3. Bluemke, D.A., Boxerman, J.L., Atalar, E., McVeigh, E.R.: Segmented k-space cine breath-hold cardiovascular MR imaging: Part 1. Principles and technique. AJR. Am. J. Roentgenol. 169(2), 395–400 (1997)

    Google Scholar 

  4. Cao, C., et al.: High-frequency space diffusion model for accelerated MRI. IEEE Trans. Med. Imaging (2024)

    Google Scholar 

  5. Cao, C., Cui, Z.X., Zhu, Q., Liang, D., Zhu, Y.: PS-Net: deep partially separable modelling for dynamic magnetic resonance imaging. arXiv preprint arXiv:2205.04073 (2022)

  6. Cheng, J., et al.: Learning data consistency and its application to dynamic MR imaging. IEEE Trans. Med. Imaging 40(11), 3140–3153 (2021)

    Article  Google Scholar 

  7. Cheng, J.Y., et al.: Comprehensive motion-compensated highly accelerated 4D flow MRI with ferumoxytol enhancement for pediatric congenital heart disease. J. Magn. Reson. Imaging 43(6), 1355–1368 (2016)

    Article  Google Scholar 

  8. Chung, H., Ye, J.C.: Score-based diffusion models for accelerated MRI. Med. Image Anal. 80, 102479 (2022)

    Article  Google Scholar 

  9. Haldar, J.P., Setsompop, K.: Linear predictability in magnetic resonance imaging reconstruction: leveraging shift-invariant Fourier structure for faster and better imaging. IEEE Signal Process. Mag. 37(1), 69–82 (2020)

    Article  Google Scholar 

  10. Jacob, M., Mani, M.P., Ye, J.C.: Structured low-rank algorithms: theory, magnetic resonance applications, and links to machine learning. IEEE Signal Process. Mag. 37(1), 54–68 (2020)

    Article  Google Scholar 

  11. Küstner, T., et al.: CINENet: deep learning-based 3D cardiac cine MRI reconstruction with multi-coil complex-valued 4D spatio-temporal convolutions. Sci. Rep. 10(1), 13710 (2020)

    Article  Google Scholar 

  12. Liang, Z.P., Boada, F., Constable, R., Haacke, E., Lauterbur, P., Smith, M.: Constrained reconstruction methods in MR imaging. Rev. Magn. Reson. Med. 4(2), 67–185 (1992)

    Google Scholar 

  13. Lingala, S.G., Hu, Y., DiBella, E., Jacob, M.: Accelerated dynamic MRI exploiting sparsity and low-rank structure: KT SLR. IEEE Trans. Med. Imaging 30(5), 1042–1054 (2011)

    Article  Google Scholar 

  14. Liu, C., et al.: Joint distribution modeling for accelerating T1rho reconstruction. In: Proceedings of the International Society for Magnetic Resonance in Medicine (ISMRM) Annual Meeting and Exhibition, Abstract Number: 6870 (2023)

    Google Scholar 

  15. Lustig, M., Donoho, D., Pauly, J.M.: Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn. Reson. Med. Official J. Int. Soc. Magn. Reson. Med. 58(6), 1182–1195 (2007)

    Article  Google Scholar 

  16. Lustig, M., Pauly, J.M.: Spirit: iterative self-consistent parallel imaging reconstruction from arbitrary k-space. Magn. Reson. Med. 64(2), 457–471 (2010)

    Article  Google Scholar 

  17. Otazo, R., Candes, E., Sodickson, D.K.: Low-rank plus sparse matrix decomposition for accelerated dynamic MRI with separation of background and dynamic components. Magn. Reson. Med. 73(3), 1125–1136 (2015)

    Article  Google Scholar 

  18. Peng, C., Guo, P., Zhou, S.K., Patel, V.M., Chellappa, R.: Towards performant and reliable undersampled MR reconstruction via diffusion model sampling. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13436, pp. 623–633. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16446-0_59

    Chapter  Google Scholar 

  19. Qin, C., Schlemper, J., Caballero, J., Price, A.N., Hajnal, J.V., Rueckert, D.: Convolutional recurrent neural networks for dynamic MR image reconstruction. IEEE Trans. Med. Imaging 38(1), 280–290 (2018)

    Article  Google Scholar 

  20. Qin, C., et al.: k-t NEXT: dynamic MR image reconstruction exploiting spatio-temporal correlations. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 505–513. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_56

    Chapter  Google Scholar 

  21. Sandino, C.M., Lai, P., Vasanawala, S.S., Cheng, J.Y.: Accelerating cardiac cine MRI using a deep learning-based espirit reconstruction. Magn. Reson. Med. 85(1), 152–167 (2021)

    Article  Google Scholar 

  22. Särkkä, S., Solin, A.: Applied Stochastic Differential Equations, vol. 10. Cambridge University Press, Cambridge (2019)

    Book  Google Scholar 

  23. Schlemper, J., Caballero, J., Hajnal, J.V., Price, A.N., Rueckert, D.: A deep cascade of convolutional neural networks for dynamic MR image reconstruction. IEEE Trans. Med. Imaging 37(2), 491–503 (2017)

    Article  Google Scholar 

  24. Song, Y., Sohl-Dickstein, J., Kingma, D.P., Kumar, A., Ermon, S., Poole, B.: Score-based generative modeling through stochastic differential equations. arXiv preprint arXiv:2011.13456 (2020)

  25. Uecker, M., et al.: Espirit-an eigenvalue approach to autocalibrating parallel MRI: where sense meets grappa. Magn. Reson. Med. 71(3), 990–1001 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This study was funded by the National Natural Science Foundation of China (62131015, 62250710165, U23A20295, 62106252, 62331028, 62206273 and 62125111), and Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province (2023B1212060052).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dinggang Shen or Dong Liang .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 7236 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, Y. et al. (2024). k-t Self-consistency Diffusion: A Physics-Informed Model for Dynamic MR Imaging. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15007. Springer, Cham. https://doi.org/10.1007/978-3-031-72104-5_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72104-5_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72103-8

  • Online ISBN: 978-3-031-72104-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics