Nothing Special   »   [go: up one dir, main page]

Skip to main content

Predictive Monitoring of Business Process Execution Delays

  • Conference paper
  • First Online:
Advances in Information Systems, Artificial Intelligence and Knowledge Management (ICIKS 2023)

Part of the book series: Lecture Notes in Business Information Processing ((LNBIP,volume 486))

Included in the following conference series:

  • 274 Accesses

Abstract

Nowadays, organizations are becoming increasingly aware of the importance of better utilizing their knowledge assets and adopting a quality management model based on a process approach. This can be achieved by adopting a multidisciplinary approach that combines the fields of Knowledge Management, Business Process Management and Process Mining. Therefore, to improve their performance and increase their responsiveness, organizations must identify, manage and monitor all the business processes (BP) that are likely to mobilize crucial knowledge. In fact, implementing an IT system that automates business processes is necessary to achieve these goals. In this context, we propose a new method for predicting the execution times of business processes baptized BPETPM. This method is based on the CRISP-DM approach. We used a Process Mining techniques particularly the machine learning to exploit the execution data of a workflow engine. In order to prove the applicability of this method we have developed an intelligent system for predicting execution time of BP named iBPMS4PET. The applicative framework of this research work is the incoming mail management process as part of a group health insurance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.objetconnecte.com/bpm-presentation.

References

  1. Van der Aalst, W.M., Schonenberg, M.H., Song, M.: Time prediction based on process mining. Inf. Syst. 36(2), 450–475 (2011)

    Article  Google Scholar 

  2. van der Aalst, W. M. P.: Process mining: a 360 degree overview In: van der Aalst, W.M.P., Carmona, J. (eds.) Process Mining Handbook. LNBIP, vol. 448, pp. 3–34. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-08848-3_1

  3. van der Aalst, W. M. P.: Foundations of process discovery. In: van der Aalst, W.M.P., Carmona, J. (eds.) Process Mining Handbook. LNBIP, vol. 448, pp. 37–75. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-08848-3_2

  4. Morey, D., Maybury, M.T., Thuraisingham, B.M.: Knowledge Management: Classic and Contemporary Works. MIT Press, Cambridge (2002)

    Google Scholar 

  5. Turki, M., Saad, I., Gargouri, F., Kassel, G.: A business process evaluation methodology for knowledge management based on multicriteria decision-making approach. In: Information Systems for Knowledge Management, pp. 249–277 John Wiley & Sons, Ltd (2014)

    Google Scholar 

  6. Sanzogni, L., Guzman, G., Busch, P.: Artificial intelligence and knowledge management: questioning the tacit dimension. Prometheus 35(1), 37–56 (2017)

    Article  Google Scholar 

  7. Jarrahi, M.H., Askay, D., Eshraghi, A., Smith, P.: Artificial intelligence and knowledge management: a partnership between human and AI. Bus. Horiz. 66(1), 87–99 (2023)

    Article  Google Scholar 

  8. Dumas, M., La Rosa, M., Mendling, J., Reijers, H.A.: Process implementation with executable models. Presented at the (2018). https://doi.org/10.1007/978-3-662-56509-4_10

    Chapter  Google Scholar 

  9. Ko, R.K., Lee, S.S., Wah Lee, E.: Business process management (BPM) standards: a survey. Bus. Process. Manag. J. 15(5), 744–791 (2009)

    Article  Google Scholar 

  10. Teinemaa, I., Dumas, M., Rosa, M.L., Maggi, F.M.: Outcome-oriented predictive process monitoring: review and benchmark. ACM Trans. Knowl. Discov. Data (TKDD) 13(2), 1–57 (2019)

    Article  Google Scholar 

  11. Márquez-Chamorro, A.E., Resinas, M., Ruiz-Cortés, A.: Predictive monitoring of business processes: a survey. IEEE Trans. Serv. Comput. 11(6), 962–977 (2017)

    Article  Google Scholar 

  12. van der Aalst, W.M.P.: data scientist: the engineer of the future. In: Mertins, K., Bénaben, F., Poler, R., Bourrières, JP. (eds.) Enterprise Interoperability VI Proceedings of the I-ESA Conferences, vol. 7, pp. 13–26. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04948-9_2

  13. vom Brocke, J., Zelt, S., Schmiedel, T.: On the role of context in business process management. Int. J. Inf. Manag. 36(3), 486–495 (2016)

    Article  Google Scholar 

  14. Augusto, A., et al.: Automated discovery of process models from event logs: review and benchmark. IEEE Trans. Knowl. Data Eng. 31(4), 686–705 (2019)

    Article  Google Scholar 

  15. van der Aalst, W., et al.: Process mining manifesto. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM 2011. LNBIP, vol. 99, pp. 169–194. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28108-2_19

    Chapter  Google Scholar 

  16. Folino, F., Greco, G., Guzzo, A., Pontieri, L.: Mining usage scenarios in business processes: outlier-aware discovery and run-time prediction. Data Knowl. Eng. 70(12), 1005–1029 (2011)

    Article  Google Scholar 

  17. Folino, F., Guarascio, M., Pontieri, L.: Discovering context-aware models for predicting business process performances. In: Meersman, R., et al. (eds.) OTM 2012. LNCS, vol. 7565, pp. 287–304. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33606-5_18

    Chapter  Google Scholar 

  18. Polato, M., Sperduti, A., Burattin, A., de Leoni, M.: Data-aware remaining time prediction of business process instances. In: 2014 International Joint Conference on Neural Networks (IJCNN), Beijing, China, pp. 816–823 (2014)

    Google Scholar 

  19. Ceci, M., Lanotte, P.F., Fumarola, F., Cavallo, D.P., Malerba, D.: Completion time and next activity prediction of processes using sequential pattern mining. In: Džeroski, S., Panov, P., Kocev, D., Todorovski, L. (eds.) DS 2014. LNCS (LNAI), vol. 8777, pp. 49–61. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11812-3_5

    Chapter  Google Scholar 

  20. de Leoni, M., van der Aalst, W.M.P., Dees, M.: A General framework for correlating business process characteristics. In: Sadiq, S., Soffer, P., Völzer, H. (eds.) BPM 2014. LNCS, vol. 8659, pp. 250–266. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10172-9_16

    Chapter  Google Scholar 

  21. Lakshmanan, G.T., Shamsi, D., Doganata, Y.N., Unuvar, M., Khalaf, R.: A Markov prediction model for data-driven semi-structured business processes. Knowl. Inf. Syst. 42(1), 97–126 (2015)

    Article  Google Scholar 

  22. Tax, N., Verenich, I., La Rosa, M., Dumas, M.: Predictive Business process monitoring with LSTM neural networks. In: Dubois, E., Pohl, K. (eds.) CAiSE 2017. LNCS, vol. 10253, pp. 477–492. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59536-8_30

    Chapter  Google Scholar 

  23. Ghattas, J., Soffer, P., Peleg, M.: Improving business process decision making based on past experience. Decis. Support. Syst. 59, 93–107 (2014)

    Article  Google Scholar 

  24. Senderovich, A., Weidlich, M., Gal, A., Mandelbaum, A.: Queue mining for delay prediction in multi-class service processes. Inf. Syst. 53, 278–295 (2015)

    Article  Google Scholar 

  25. Rogge-Solti, A., Weske, M.: Prediction of business process durations using non-Markovian stochastic Petri nets. Inf. Syst. 54, 1–14 (2015)

    Article  Google Scholar 

  26. Maggi, F.M., Di Francescomarino, C., Dumas, M., Ghidini, C.: Predictive monitoring of business processes. In: Jarke, M., Mylopoulos, J., Quix, C., Rolland, C., Manolopoulos, Y., Mouratidis, H., Horkoff, J. (eds.) CAiSE 2014. LNCS, vol. 8484, pp. 457–472. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07881-6_31

    Chapter  Google Scholar 

  27. Leontjeva, A., Conforti, R., Di Francescomarino, C., Dumas, M., Maggi, F.M.: Complex symbolic sequence encodings for predictive monitoring of business processes. In: Motahari-Nezhad, H.R., Recker, J., Weidlich, M. (eds.) BPM 2015. LNCS, vol. 9253, pp. 297–313. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23063-4_21

    Chapter  Google Scholar 

  28. Di Francescomarino, C., Ghidini, C., Maggi, F.M., Milani, F.: Predictive process monitoring methods: which one suits me best? In: Weske, M., Montali, M., Weber, I., vom Brocke, J. (eds.) BPM 2018. LNCS, vol. 11080, pp. 462–479. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98648-7_27

    Chapter  Google Scholar 

  29. Teinemaa, I., Dumas, M., Maggi, F.M., Di Francescomarino, C.: Predictive business process monitoring with structured and unstructured data. In: La Rosa, M., Loos, P., Pastor, O. (eds.) BPM 2016. LNCS, vol. 9850, pp. 401–417. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45348-4_23

    Chapter  Google Scholar 

  30. Evermann, J., Rehse, J.R., Fettke, P.: A deep learning approach for predicting process behaviour at runtime. In: Dumas, M., Fantinato, M. (eds.) BPM 2016. LNBIP, vol. 281, pp. 327–338. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58457-7_24

    Chapter  Google Scholar 

  31. Kratsch, W., Manderscheid, J., Röglinger, M., Seyfried, J.: Machine learning in business process monitoring: a comparison of deep learning and classical approaches used for outcome prediction. Bus. Inf. Syst. Eng. 63, 261–276 (2021)

    Article  Google Scholar 

  32. Schröer, C., Kruse, F., Gómez, J.M.: A systematic literature review on applying CRISP-DM process model. Proc. Comput. Sci. 181, 526–534 (2021)

    Article  Google Scholar 

  33. Zhang, Y.: Sales forecasting of promotion activities based on the cross-industry standard process for data mining of e-commerce promotional information and support vector regression. J. Comput. 32(1), 212–225 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walid Ben Fradj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ben Fradj, W., Turki, M. (2024). Predictive Monitoring of Business Process Execution Delays. In: Saad, I., Rosenthal-Sabroux, C., Gargouri, F., Chakhar, S., Williams, N., Haig, E. (eds) Advances in Information Systems, Artificial Intelligence and Knowledge Management. ICIKS 2023. Lecture Notes in Business Information Processing, vol 486. Springer, Cham. https://doi.org/10.1007/978-3-031-51664-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-51664-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-51663-4

  • Online ISBN: 978-3-031-51664-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics