Abstract
Nowadays, organizations are becoming increasingly aware of the importance of better utilizing their knowledge assets and adopting a quality management model based on a process approach. This can be achieved by adopting a multidisciplinary approach that combines the fields of Knowledge Management, Business Process Management and Process Mining. Therefore, to improve their performance and increase their responsiveness, organizations must identify, manage and monitor all the business processes (BP) that are likely to mobilize crucial knowledge. In fact, implementing an IT system that automates business processes is necessary to achieve these goals. In this context, we propose a new method for predicting the execution times of business processes baptized BPETPM. This method is based on the CRISP-DM approach. We used a Process Mining techniques particularly the machine learning to exploit the execution data of a workflow engine. In order to prove the applicability of this method we have developed an intelligent system for predicting execution time of BP named iBPMS4PET. The applicative framework of this research work is the incoming mail management process as part of a group health insurance.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Van der Aalst, W.M., Schonenberg, M.H., Song, M.: Time prediction based on process mining. Inf. Syst. 36(2), 450–475 (2011)
van der Aalst, W. M. P.: Process mining: a 360 degree overview In: van der Aalst, W.M.P., Carmona, J. (eds.) Process Mining Handbook. LNBIP, vol. 448, pp. 3–34. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-08848-3_1
van der Aalst, W. M. P.: Foundations of process discovery. In: van der Aalst, W.M.P., Carmona, J. (eds.) Process Mining Handbook. LNBIP, vol. 448, pp. 37–75. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-08848-3_2
Morey, D., Maybury, M.T., Thuraisingham, B.M.: Knowledge Management: Classic and Contemporary Works. MIT Press, Cambridge (2002)
Turki, M., Saad, I., Gargouri, F., Kassel, G.: A business process evaluation methodology for knowledge management based on multicriteria decision-making approach. In: Information Systems for Knowledge Management, pp. 249–277 John Wiley & Sons, Ltd (2014)
Sanzogni, L., Guzman, G., Busch, P.: Artificial intelligence and knowledge management: questioning the tacit dimension. Prometheus 35(1), 37–56 (2017)
Jarrahi, M.H., Askay, D., Eshraghi, A., Smith, P.: Artificial intelligence and knowledge management: a partnership between human and AI. Bus. Horiz. 66(1), 87–99 (2023)
Dumas, M., La Rosa, M., Mendling, J., Reijers, H.A.: Process implementation with executable models. Presented at the (2018). https://doi.org/10.1007/978-3-662-56509-4_10
Ko, R.K., Lee, S.S., Wah Lee, E.: Business process management (BPM) standards: a survey. Bus. Process. Manag. J. 15(5), 744–791 (2009)
Teinemaa, I., Dumas, M., Rosa, M.L., Maggi, F.M.: Outcome-oriented predictive process monitoring: review and benchmark. ACM Trans. Knowl. Discov. Data (TKDD) 13(2), 1–57 (2019)
Márquez-Chamorro, A.E., Resinas, M., Ruiz-Cortés, A.: Predictive monitoring of business processes: a survey. IEEE Trans. Serv. Comput. 11(6), 962–977 (2017)
van der Aalst, W.M.P.: data scientist: the engineer of the future. In: Mertins, K., Bénaben, F., Poler, R., Bourrières, JP. (eds.) Enterprise Interoperability VI Proceedings of the I-ESA Conferences, vol. 7, pp. 13–26. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04948-9_2
vom Brocke, J., Zelt, S., Schmiedel, T.: On the role of context in business process management. Int. J. Inf. Manag. 36(3), 486–495 (2016)
Augusto, A., et al.: Automated discovery of process models from event logs: review and benchmark. IEEE Trans. Knowl. Data Eng. 31(4), 686–705 (2019)
van der Aalst, W., et al.: Process mining manifesto. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM 2011. LNBIP, vol. 99, pp. 169–194. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28108-2_19
Folino, F., Greco, G., Guzzo, A., Pontieri, L.: Mining usage scenarios in business processes: outlier-aware discovery and run-time prediction. Data Knowl. Eng. 70(12), 1005–1029 (2011)
Folino, F., Guarascio, M., Pontieri, L.: Discovering context-aware models for predicting business process performances. In: Meersman, R., et al. (eds.) OTM 2012. LNCS, vol. 7565, pp. 287–304. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33606-5_18
Polato, M., Sperduti, A., Burattin, A., de Leoni, M.: Data-aware remaining time prediction of business process instances. In: 2014 International Joint Conference on Neural Networks (IJCNN), Beijing, China, pp. 816–823 (2014)
Ceci, M., Lanotte, P.F., Fumarola, F., Cavallo, D.P., Malerba, D.: Completion time and next activity prediction of processes using sequential pattern mining. In: Džeroski, S., Panov, P., Kocev, D., Todorovski, L. (eds.) DS 2014. LNCS (LNAI), vol. 8777, pp. 49–61. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11812-3_5
de Leoni, M., van der Aalst, W.M.P., Dees, M.: A General framework for correlating business process characteristics. In: Sadiq, S., Soffer, P., Völzer, H. (eds.) BPM 2014. LNCS, vol. 8659, pp. 250–266. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10172-9_16
Lakshmanan, G.T., Shamsi, D., Doganata, Y.N., Unuvar, M., Khalaf, R.: A Markov prediction model for data-driven semi-structured business processes. Knowl. Inf. Syst. 42(1), 97–126 (2015)
Tax, N., Verenich, I., La Rosa, M., Dumas, M.: Predictive Business process monitoring with LSTM neural networks. In: Dubois, E., Pohl, K. (eds.) CAiSE 2017. LNCS, vol. 10253, pp. 477–492. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59536-8_30
Ghattas, J., Soffer, P., Peleg, M.: Improving business process decision making based on past experience. Decis. Support. Syst. 59, 93–107 (2014)
Senderovich, A., Weidlich, M., Gal, A., Mandelbaum, A.: Queue mining for delay prediction in multi-class service processes. Inf. Syst. 53, 278–295 (2015)
Rogge-Solti, A., Weske, M.: Prediction of business process durations using non-Markovian stochastic Petri nets. Inf. Syst. 54, 1–14 (2015)
Maggi, F.M., Di Francescomarino, C., Dumas, M., Ghidini, C.: Predictive monitoring of business processes. In: Jarke, M., Mylopoulos, J., Quix, C., Rolland, C., Manolopoulos, Y., Mouratidis, H., Horkoff, J. (eds.) CAiSE 2014. LNCS, vol. 8484, pp. 457–472. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07881-6_31
Leontjeva, A., Conforti, R., Di Francescomarino, C., Dumas, M., Maggi, F.M.: Complex symbolic sequence encodings for predictive monitoring of business processes. In: Motahari-Nezhad, H.R., Recker, J., Weidlich, M. (eds.) BPM 2015. LNCS, vol. 9253, pp. 297–313. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23063-4_21
Di Francescomarino, C., Ghidini, C., Maggi, F.M., Milani, F.: Predictive process monitoring methods: which one suits me best? In: Weske, M., Montali, M., Weber, I., vom Brocke, J. (eds.) BPM 2018. LNCS, vol. 11080, pp. 462–479. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98648-7_27
Teinemaa, I., Dumas, M., Maggi, F.M., Di Francescomarino, C.: Predictive business process monitoring with structured and unstructured data. In: La Rosa, M., Loos, P., Pastor, O. (eds.) BPM 2016. LNCS, vol. 9850, pp. 401–417. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45348-4_23
Evermann, J., Rehse, J.R., Fettke, P.: A deep learning approach for predicting process behaviour at runtime. In: Dumas, M., Fantinato, M. (eds.) BPM 2016. LNBIP, vol. 281, pp. 327–338. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58457-7_24
Kratsch, W., Manderscheid, J., Röglinger, M., Seyfried, J.: Machine learning in business process monitoring: a comparison of deep learning and classical approaches used for outcome prediction. Bus. Inf. Syst. Eng. 63, 261–276 (2021)
Schröer, C., Kruse, F., Gómez, J.M.: A systematic literature review on applying CRISP-DM process model. Proc. Comput. Sci. 181, 526–534 (2021)
Zhang, Y.: Sales forecasting of promotion activities based on the cross-industry standard process for data mining of e-commerce promotional information and support vector regression. J. Comput. 32(1), 212–225 (2021)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Ben Fradj, W., Turki, M. (2024). Predictive Monitoring of Business Process Execution Delays. In: Saad, I., Rosenthal-Sabroux, C., Gargouri, F., Chakhar, S., Williams, N., Haig, E. (eds) Advances in Information Systems, Artificial Intelligence and Knowledge Management. ICIKS 2023. Lecture Notes in Business Information Processing, vol 486. Springer, Cham. https://doi.org/10.1007/978-3-031-51664-1_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-51664-1_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-51663-4
Online ISBN: 978-3-031-51664-1
eBook Packages: Computer ScienceComputer Science (R0)