Abstract
Discovering predictive models for run-time support is an emerging topic in Process Mining research, which can effectively help optimize business process enactments. However, making accurate estimates is not easy especially when considering fine-grain performance measures (e.g., processing times) on a complex and flexible business process, where performance patterns change over time, depending on both case properties and context factors (e.g., seasonality, workload). We try to face such a situation by using an ad-hoc predictive clustering approach, where different context-related execution scenarios are discovered and modeled accurately via distinct state-aware performance predictors. A readable predictive model is obtained eventually, which can make performance forecasts for any new running process case, by using the predictor of the cluster it is estimated to belong to. The approach was implemented in a system prototype, and validated on a real-life context. Test results confirmed the scalability of the approach, and its efficacy in predicting processing times and associated SLA violations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
CLUS: A predictive clustering system, http://dtai.cs.kuleuven.be/clus/
Blockeel, H., Raedt, L.D.: Top-down induction of first-order logical decision trees. Artificial Intelligence 101(1-2), 285–297 (1998)
Blockeel, H., Raedt, L.D., Ramon, J.: Top-down induction of clustering trees. In: Proc. of 15th Intl. Conference on Machine Learning (ICML1998). pp. 55–63 (1998)
Caragea, C., Silvescu, A., Caragea, D., Honavar, V.: Abstraction augmented Markov models. In: Proc. of 2010 IEEE Int. Conf. on Data Mining (ICDM 2010), pp. 68–77 (2010)
Conforti, R., Fortino, G., La Rosa, M., ter Hofstede, A.H.M.: History-Aware, Real-Time Risk Detection in Business Processes. In: Meersman, R., Dillon, T., Herrero, P., Kumar, A., Reichert, M., Qing, L., Ooi, B.-C., Damiani, E., Schmidt, D.C., White, J., Hauswirth, M., Hitzler, P., Mohania, M. (eds.) OTM 2011, Part I. LNCS, vol. 7044, pp. 100–118. Springer, Heidelberg (2011)
van Dongen, B.F., Crooy, R.A., van der Aalst, W.M.P.: Cycle Time Prediction: When Will This Case Finally Be Finished? In: Meersman, R., Tari, Z. (eds.) OTM 2008, Part I. LNCS, vol. 5331, pp. 319–336. Springer, Heidelberg (2008)
Folino, F., Greco, G., Guzzo, A., Pontieri, L.: Mining usage scenarios in business processes: Outlier-aware discovery and run-time prediction. Data & Knowledge Engineering 70(12), 1005–1029 (2011)
Greco, G., Guzzo, A., Pontieri, L., Saccà, D.: Discovering expressive process models by clustering log traces. IEEE Trans. on Knowl. and Data Engineering 18(8), 1010–1027 (2006)
Schonenberg, H., Weber, B., van Dongen, B.F., van der Aalst, W.M.P.: Supporting Flexible Processes through Recommendations Based on History. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp. 51–66. Springer, Heidelberg (2008)
Song, M., Günther, C.W., van der Aalst, W.M.P.: Trace Clustering in Process Mining. In: Ardagna, D., Mecella, M., Yang, J. (eds.) BPM 2008 Workshops. LNBIP, vol. 17, pp. 109–120. Springer, Heidelberg (2009)
van der Aalst, W.M.P., van Dongen, B.F., Herbst, J., Maruster, L., Schimm, G., Weijters, A.J.M.M.: Workflow mining: a survey of issues and approaches. Data & Knowledge Engineering 47(2), 237–267 (2003)
van der Aalst, W.M.P., van Dongen, B.F., Günther, C.W., Mans, R.S., de Medeiros, A.K.A., Rozinat, A., Rubin, V., Song, M., Verbeek, H.M.W., Weijters, A.J.M.M.T.: ProM 4.0: Comprehensive Support for Real Process Analysis. In: Kleijn, J., Yakovlev, A. (eds.) ICATPN 2007. LNCS, vol. 4546, pp. 484–494. Springer, Heidelberg (2007)
van der Aalst, W.M.P., Schonenberg, M.H., Song, M.: Time prediction based on process mining. Information Systems 36(2), 450–475 (2011)
de la Vara, J.L., Ali, R., Dalpiaz, F., Sánchez, J., Giorgini, P.: COMPRO: A Methodological Approach for Business Process Contextualisation. In: Meersman, R., Dillon, T.S., Herrero, P. (eds.) OTM 2010, Part I. LNCS, vol. 6426, pp. 132–149. Springer, Heidelberg (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Folino, F., Guarascio, M., Pontieri, L. (2012). Discovering Context-Aware Models for Predicting Business Process Performances. In: Meersman, R., et al. On the Move to Meaningful Internet Systems: OTM 2012. OTM 2012. Lecture Notes in Computer Science, vol 7565. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33606-5_18
Download citation
DOI: https://doi.org/10.1007/978-3-642-33606-5_18
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-33605-8
Online ISBN: 978-3-642-33606-5
eBook Packages: Computer ScienceComputer Science (R0)