Nothing Special   »   [go: up one dir, main page]

Skip to main content

Discovering Context-Aware Models for Predicting Business Process Performances

  • Conference paper
On the Move to Meaningful Internet Systems: OTM 2012 (OTM 2012)

Abstract

Discovering predictive models for run-time support is an emerging topic in Process Mining research, which can effectively help optimize business process enactments. However, making accurate estimates is not easy especially when considering fine-grain performance measures (e.g., processing times) on a complex and flexible business process, where performance patterns change over time, depending on both case properties and context factors (e.g., seasonality, workload). We try to face such a situation by using an ad-hoc predictive clustering approach, where different context-related execution scenarios are discovered and modeled accurately via distinct state-aware performance predictors. A readable predictive model is obtained eventually, which can make performance forecasts for any new running process case, by using the predictor of the cluster it is estimated to belong to. The approach was implemented in a system prototype, and validated on a real-life context. Test results confirmed the scalability of the approach, and its efficacy in predicting processing times and associated SLA violations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. CLUS: A predictive clustering system, http://dtai.cs.kuleuven.be/clus/

  2. Blockeel, H., Raedt, L.D.: Top-down induction of first-order logical decision trees. Artificial Intelligence 101(1-2), 285–297 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Blockeel, H., Raedt, L.D., Ramon, J.: Top-down induction of clustering trees. In: Proc. of 15th Intl. Conference on Machine Learning (ICML1998). pp. 55–63 (1998)

    Google Scholar 

  4. Caragea, C., Silvescu, A., Caragea, D., Honavar, V.: Abstraction augmented Markov models. In: Proc. of 2010 IEEE Int. Conf. on Data Mining (ICDM 2010), pp. 68–77 (2010)

    Google Scholar 

  5. Conforti, R., Fortino, G., La Rosa, M., ter Hofstede, A.H.M.: History-Aware, Real-Time Risk Detection in Business Processes. In: Meersman, R., Dillon, T., Herrero, P., Kumar, A., Reichert, M., Qing, L., Ooi, B.-C., Damiani, E., Schmidt, D.C., White, J., Hauswirth, M., Hitzler, P., Mohania, M. (eds.) OTM 2011, Part I. LNCS, vol. 7044, pp. 100–118. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  6. van Dongen, B.F., Crooy, R.A., van der Aalst, W.M.P.: Cycle Time Prediction: When Will This Case Finally Be Finished? In: Meersman, R., Tari, Z. (eds.) OTM 2008, Part I. LNCS, vol. 5331, pp. 319–336. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  7. Folino, F., Greco, G., Guzzo, A., Pontieri, L.: Mining usage scenarios in business processes: Outlier-aware discovery and run-time prediction. Data & Knowledge Engineering 70(12), 1005–1029 (2011)

    Article  Google Scholar 

  8. Greco, G., Guzzo, A., Pontieri, L., Saccà, D.: Discovering expressive process models by clustering log traces. IEEE Trans. on Knowl. and Data Engineering 18(8), 1010–1027 (2006)

    Article  Google Scholar 

  9. Schonenberg, H., Weber, B., van Dongen, B.F., van der Aalst, W.M.P.: Supporting Flexible Processes through Recommendations Based on History. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp. 51–66. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. Song, M., Günther, C.W., van der Aalst, W.M.P.: Trace Clustering in Process Mining. In: Ardagna, D., Mecella, M., Yang, J. (eds.) BPM 2008 Workshops. LNBIP, vol. 17, pp. 109–120. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  11. van der Aalst, W.M.P., van Dongen, B.F., Herbst, J., Maruster, L., Schimm, G., Weijters, A.J.M.M.: Workflow mining: a survey of issues and approaches. Data & Knowledge Engineering 47(2), 237–267 (2003)

    Article  Google Scholar 

  12. van der Aalst, W.M.P., van Dongen, B.F., Günther, C.W., Mans, R.S., de Medeiros, A.K.A., Rozinat, A., Rubin, V., Song, M., Verbeek, H.M.W., Weijters, A.J.M.M.T.: ProM 4.0: Comprehensive Support for Real Process Analysis. In: Kleijn, J., Yakovlev, A. (eds.) ICATPN 2007. LNCS, vol. 4546, pp. 484–494. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  13. van der Aalst, W.M.P., Schonenberg, M.H., Song, M.: Time prediction based on process mining. Information Systems 36(2), 450–475 (2011)

    Article  Google Scholar 

  14. de la Vara, J.L., Ali, R., Dalpiaz, F., Sánchez, J., Giorgini, P.: COMPRO: A Methodological Approach for Business Process Contextualisation. In: Meersman, R., Dillon, T.S., Herrero, P. (eds.) OTM 2010, Part I. LNCS, vol. 6426, pp. 132–149. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Folino, F., Guarascio, M., Pontieri, L. (2012). Discovering Context-Aware Models for Predicting Business Process Performances. In: Meersman, R., et al. On the Move to Meaningful Internet Systems: OTM 2012. OTM 2012. Lecture Notes in Computer Science, vol 7565. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33606-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33606-5_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33605-8

  • Online ISBN: 978-3-642-33606-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics