Abstract
It is well known that there are topological paradoxes in digital geometry and in digital image processing. The most studied such paradoxes are on the square grid, causing the fact that the digital version of the Jordan curve theorem needs some special care. In a nutshell, the paradox can be interpreted by lines, e.g., two different color diagonals of a chessboard that go through each other without sharing a pixel. The triangular grid also has a similar paradox, here diamond chains of different directions may cross each other without having an intersection trixel (triangle pixel). In this paper, a new topology is offered on the triangular grid, which gives a solution to the topological problems in the triangular grid analogous to the Khalimsky’s solution on the square grid.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Abdalla, M., Nagy, B.: Dilation and erosion on the triangular tessellation: an independent approach. IEEE Access 6, 23108–23119 (2018)
Abdalla, M., Nagy, B.: Mathematical morphology on the triangular grid: the strict approach. SIAM J. Imaging Sci. 13, 1367–1385 (2020)
Abuhmaidan, K., Nagy, B.: Bijective, non-bijective and semi-bijective translations on the triangular plane. Mathematics 8/1, paper 29 (2020)
Brimkov, W.E., Barneva, R.P.: Analytical honeycomb geometry for raster and volume graphics. Comput. J. 48(2), 180–199 (2005)
Čomić, L.: Convex and concave vertices on a simple closed curve in the triangular grid. In: Couprie, M., Cousty, J., Kenmochi, Y., Mustafa, N. (eds.) DGCI 2019. LNCS, vol. 11414, pp. 397–408. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14085-4_31
Čomić, L.: Gaps and well-composed objects in the triangular grid. In: Marfil, R., Calderón, M., Díaz del Río, F., Real, P., Bandera, A. (eds.) CTIC 2019. LNCS, vol. 11382, pp. 54–67. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10828-1_5
Conway, J.H., Burgiel, H., Goodman-Strauss, C.: The Symmetries of Things. AK Peters (2008)
Deutsch, E.S.: Thinning algorithms on rectangular, hexagonal and triangular arrays. Commun. ACM 15(3), 827–837 (1972)
Grünbaum, B., Shephard, G.C.: Tilings by regular polygons. Math. Mag. 50(5), 227–247 (1977)
Hartman, N.P., Tanimoto, S.L.: A hexagonal pyramid data structure for image processing. IEEE Trans. Syst. Man Cybern. 14(2), 247–256 (1984)
Her, I.: A symmetrical coordinate frame on the hexagonal grid for computer graphics and vision. ASME J. Mech. Design 115(3), 447–449 (1993)
Kardos, P., Palágyi, K.: On topology preservation of mixed operators in triangular, square, and hexagonal grids. Discret. Appl. Math. 216, 441–448 (2017)
Khalimsky, E.D., Kopperman, R., Meyer, P.R.: Computer graphics and connected topologies on finite ordered sets. Topol. Appl. 36, 1–17 (1990)
Khalimsky, E.D., Kopperman, R., Meyer, P.R.: Boundaries in digital planes. J. Appl. Math. Stoch. Anal. 3, 27–55 (1990)
Kiselman, C.O.: Digital Jordan curve theorems. In: Borgefors, G., Nyström, I., di Baja, G.S. (eds.) DGCI 2000. LNCS, vol. 1953, pp. 46–56. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44438-6_5
Kiselman, C.O.: Elements of Digital Geometry, Mathematical Morphology, and Discrete Optimization. World Scientific, Singapore (2022)
Klette, R., Rosenfeld, A.: Digital Geometry - Geometric Methods for Digital Picture Analysis. Morgan Kaufmann, Elsevier Science B.V (2004)
Kong, T.Y., Kopperman, R., Meyer, P.R.: A topological approach to digital topology. Am. Math. Mon. 98, 902–917 (1991)
Kong, T.Y., Rosenfeld, A. (eds.): Topological Algorithms for Digital Image Processing. Elsevier, Amsterdam (1996)
Kovács, G., Nagy, B., Stomfai, G., Turgay, N.D., Vizvári, B.: On chamfer distances on the square and body-centered cubic grids: an operational research approach. Math. Probl. Eng. 2021, 1–9 (2021). Article ID 5582034
Kovács, G., Nagy, B., Vizvári, B.: On weighted distances on the Khalimsky grid. In: Normand, N., Guédon, J., Autrusseau, F. (eds.) DGCI 2016. LNCS, vol. 9647, pp. 372–384. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32360-2_29
Kovács, G., Nagy, B., Vizvári, B.: Weighted distances and digital disks on the Khalimsky grid - disks with holes and islands. J. Math. Imag. Vis. 59, 2–22 (2017)
Kovács, G., Nagy, B., Vizvári, B.: Weighted distances on the trihexagonal grid. In: Kropatsch, W.G., Artner, N.M., Janusch, I. (eds.) DGCI 2017. LNCS, vol. 10502, pp. 82–93. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66272-5_8
Kovács, G., Nagy, B., Vizvári, B.: Weighted distances on the truncated hexagonal grid. Pattern Recognit. Lett. 152, 26–33 (2021)
Kovalevsky, V.: Algorithms in digital geometry based on cellular topology. In: Klette, R., Žunić, J. (eds.) IWCIA 2004. LNCS, vol. 3322, pp. 366–393. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30503-3_27
Kovalevsky, V.A.: Geometry of Locally Finite Spaces (Computer Agreeable Topology and Algorithms for Computer Imagery). Editing House Dr. Bärbel Kovalevski, Berlin (2008)
Nagy, B.: Finding shortest path with neighborhood sequences in triangular grids. In: ISPA 2001: 2nd IEEE R8-EURASIP International Symposium, Pula, Croatia, pp. 55–60 (2001)
Nagy, B.: A family of triangular grids in digital geometry. In: ISPA 2003: 3rd International Symposium on Image and Signal Processing and Analysis, Rome, Italy, pp. 101–106 (2003)
Nagy, B.: A symmetric coordinate frame for hexagonal networks. In: Theoretical Computer Science - Information Society (ACM Conference), Ljubljana, Slovenia, pp. 193–196 (2004)
Nagy, B.: Optimal neighborhood sequences on the hexagonal grid. In: ISPA 2007: 5th International Symposium, Istanbul, Turkey, pp. 310–315. IEEE (2007)
Nagy, B.: Cellular topology on the triangular grid. In: Barneva, R.P., Brimkov, V.E., Aggarwal, J.K. (eds.) IWCIA 2012. LNCS, vol. 7655, pp. 143–153. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34732-0_11
Nagy, B.: Cellular topology and topological coordinate systems on the hexagonal and on the triangular grids. Ann. Math. Artif. Intell. 75(1–2), 117–134 (2015)
Nagy, B.: Diagrams based on the hexagonal and triangular grids. Acta Polytech. Hung. 19(4), 27–42 (2022)
Nagy, B.: Non-traditional 2D grids in combinatorial imaging - advances and challenges. In: Barneva, R.P., Brimkov, V.E., Nordo, G. (eds.) IWCIA 2022. LNCS, vol. 13348, pp. 3–27. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-23612-9_1
Nagy, B., Moisi, E.V.: Memetic algorithms for reconstruction of binary images on triangular grids with 3 and 6 projections. Appl. Soft Comput. 52, 549–565 (2017)
Nagy, B., Strand, R.: A connection between \(\mathbb{Z} ^{n}\) and generalized triangular grids. In: Bebis, G., et al. (eds.) ISVC 2008. LNCS, vol. 5359, pp. 1157–1166. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89646-3_115
Radványi, A.G.: On the rectangular grid representation of general CNN networks. Int. J. Circuit Theory Appl. 30(2–3), 181–193 (2002)
Saadat, M., Nagy, B.: Digital geometry on the dual of some semi-regular tessellations. In: Lindblad, J., Malmberg, F., Sladoje, N. (eds.) DGMM 2021. LNCS, vol. 12708, pp. 283–295. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-76657-3_20
Slapal, J.: A digital analogue of the Jordan curve theorem. Discret. Appl. Math. 139(1–3), 231–251 (2004)
Slapal, J.: A Jordan curve theorem with respect to a pretopology on \(Z^2\). Int. J. Comput. Math. 90(8), 1618–1628 (2013)
Slapal, J.: Convenient adjacencies for structuring the digital plane. Ann. Math. Artif. Intell. 75(1–2), 69–88 (2015)
Slapal, J.: Alexandroff pretopologies for structuring the digital plane. Discret. Appl. Math. 216, 323–334 (2017)
Stojmenovic, I.: Honeycomb networks: topological properties and communication algorithms. IEEE Trans. Parallel Distrib. Syst. 8, 1036–1042 (1997)
Wiederhold, P., Morales, S.: Thinning on quadratic, triangular, and hexagonal cell complexes. In: Brimkov, V.E., Barneva, R.P., Hauptman, H.A. (eds.) IWCIA 2008. LNCS, vol. 4958, pp. 13–25. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78275-9_2
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Nagy, B. (2024). A Khalimsky-Like Topology on the Triangular Grid. In: Brunetti, S., Frosini, A., Rinaldi, S. (eds) Discrete Geometry and Mathematical Morphology. DGMM 2024. Lecture Notes in Computer Science, vol 14605. Springer, Cham. https://doi.org/10.1007/978-3-031-57793-2_12
Download citation
DOI: https://doi.org/10.1007/978-3-031-57793-2_12
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-57792-5
Online ISBN: 978-3-031-57793-2
eBook Packages: Computer ScienceComputer Science (R0)