Abstract
We extend the notion of a gap from the square to the triangular grid, and we propose a possible classification of gaps in this grid. We give four definitions of well-composed objects in the triangular grid by translating the existing definitions of such objects in the square grid. We show that these definitions in the triangular grid are equivalent, as they are in the square grid.
We give a formula relating the number of gaps of different types in an object in this grid with the number of boundary cells in the object, as well as three short intuitive proofs of this formula.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Borgefors, G.: Distance transformations on hexagonal grids. Pattern Recognit. Lett. 9(2), 97–105 (1989)
Borgefors, G., Sanniti di Baja, G.: Skeletonizing the distance transform on the hexagonal grid. In: 9th International Conference on Pattern Recognition, ICPR, pp. 504–507 (1988)
Boutry, N.: A study of well-composedness in n-D (Une étude du bien-composé en dimension n). Ph.D. thesis, University of Paris-Est, France (2016)
Boutry, N., Géraud, T., Najman, L.: How to make nD images well-composed without interpolation. In: 2015 IEEE International Conference on Image Processing, ICIP 2015, pp. 2149–2153 (2015)
Boutry, N., Géraud, T., Najman, L.: A tutorial on well-composedness. J. Math. Imaging Vis. 60(3), 443–478 (2018)
Bribiesca, E.: A new chain code. Pattern Recognit. 32(2), 235–251 (1999)
Brimkov, V.E.: Formulas for the number of \((n-2)\)-gaps of binary objects in arbitrary dimension. Discret. Appl. Math. 157(3), 452–463 (2009)
Brimkov, V.E., Maimone, A., Nordo, G.: An explicit formula for the number of tunnels in digital objects. CoRR abs/cs/0505084 (2005). http://arxiv.org/abs/cs/0505084
Brimkov, V.E., Maimone, A., Nordo, G.: Counting gaps in binary pictures. In: Reulke, R., Eckardt, U., Flach, B., Knauer, U., Polthier, K. (eds.) IWCIA 2006. LNCS, vol. 4040, pp. 16–24. Springer, Heidelberg (2006). https://doi.org/10.1007/11774938_2
Brimkov, V.E., Maimone, A., Nordo, G., Barneva, R.P., Klette, R.: The number of gaps in binary pictures. In: Bebis, G., Boyle, R., Koracin, D., Parvin, B. (eds.) ISVC 2005. LNCS, vol. 3804, pp. 35–42. Springer, Heidelberg (2005). https://doi.org/10.1007/11595755_5
Brimkov, V.E., Moroni, D., Barneva, R.: Combinatorial relations for digital pictures. In: Kuba, A., Nyúl, L.G., Palágyi, K. (eds.) DGCI 2006. LNCS, vol. 4245, pp. 189–198. Springer, Heidelberg (2006). https://doi.org/10.1007/11907350_16
Brimkov, V.E., Nordo, G., Barneva, R.P., Maimone, A.: Genus and dimension of digital images and their time- and space-efficient computation. Int. J. Shape Model. 14(2), 147–168 (2008)
Čomić, L.: On gaps in digital objects. In: Barneva, R., Brimkov, V., Tavares, J. (eds.) IWCIA 2018. LNCS, vol. 11255, pp. 3–16. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-05288-1_1
Čomić, L., Magillo, P.: Repairing 3D binary images using the BCC grid with a 4-valued combinatorial coordinate system. Inf. Sci. (2019, to appear)
Deutsch, E.S.: On parallel operations on hexagonal arrays. IEEE Trans. Comput. 19(10), 982–983 (1970)
Deutsch, E.S.: Thinning algorithms on rectangular, hexagonal, and triangular arrays. Commun. ACM 15(9), 827–837 (1972)
Dutt, M., Andres, E., Largeteau-Skapin, G.: Characterization and generation of straight line segments on triangular cell grid. Pattern Recognit. Lett. 103, 68–74 (2018)
Dutt, M., Biswas, A., Nagy, B.: Number of shortest paths in triangular grid for 1- and 2-neighborhoods. In: Barneva, R.P., Bhattacharya, B.B., Brimkov, V.E. (eds.) IWCIA 2015. LNCS, vol. 9448, pp. 115–124. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26145-4_9
Evako, A.V., Kopperman, R., Mukhin, Y.V.: Dimensional properties of graphs and digital spaces. J. Math. Imaging Vis. 6(2–3), 109–119 (1996)
Freeman, H.: Algorithm for generating a digital straight line on a triangular grid. IEEE Trans. Comput. 28(2), 150–152 (1979)
Golay, M.J.E.: Hexagonal parallel pattern transformations. IEEE Trans. Comput. 18(8), 733–740 (1969)
González-Díaz, R., Jiménez, M.-J., Medrano, B.: 3D well-composed polyhedral complexes. Discret. Appl. Math. 183, 59–77 (2015)
González-Díaz, R., Jiménez, M.-J., Medrano, B.: Efficiently storing well-composed polyhedral complexes computed over 3D binary images. J. Math. Imaging Vis. 59(1), 106–122 (2017)
Gray, S.: Local properties of binary images in two dimensions. IEEE Trans. Comput. 20, 551–561 (1971)
Her, I.: Geometric transformations on the hexagonal grid. IEEE Trans. Image Process. 4(9), 1213–1222 (1995)
Kardos, P., Palágyi, K.: Topology preservation on the triangular grid. Ann. Math. Artif. Intell. 75(1–2), 53–68 (2015)
Kardos, P., Palágyi, K.: On topology preservation of mixed operators in triangular, square, and hexagonal grids. Discret. Appl. Math. 216, 441–448 (2017)
Klette, R., Rosenfeld, A.: Digital Geometry: Geometric Methods for Digital Picture Analysis. Morgan Kaufmann Publishers, San Francisco, Amsterdam (2004)
Kong, T.Y., Rosenfeld, A.: Digital topology: introduction and survey. Comput. Vis., Graph., Image Process. 48(3), 357–393 (1989)
Kovalevsky, V.A.: Geometry of Locally Finite Spaces: Computer Agreeable Topology and Algorithms for Computer Imagery. Editing House Dr. Bärbel Kovalevski, Berlin (2008)
Latecki, L.J.: 3D well-composed pictures. CVGIP: Graph. Model Image Process. 59(3), 164–172 (1997)
Latecki, L.J., Eckhardt, U., Rosenfeld, A.: Well-composed sets. Comput. Vis. Image Underst. 61(1), 70–83 (1995)
Maimone, A., Nordo, G.: On 1-gaps in 3d digital objects. Filomat 22(3), 85–91 (2011)
Maimone, A., Nordo, G.: A formula for the number of \((n-2)\)-gaps in digital \(n\)-objects. Filomat 27(4), 547–557 (2013)
Nagy, B.: Cellular topology and topological coordinate systems on the hexagonal and on the triangular grids. Ann. Math. Artif. Intell. 75(1–2), 117–134 (2015)
Nagy, B., Lukic, T.: Dense projection tomography on the triangular tiling. Fundam. Inform. 145(2), 125–141 (2016)
Nagy, B., Strand, R.: Approximating Euclidean circles by neighbourhood sequences in a hexagonal grid. Theor. Comput. Sci. 412(15), 1364–1377 (2011)
Sarkar, A., Biswas, A., Dutt, M., Bhowmick, P., Bhattacharya, B.B.: A linear-time algorithm to compute the triangular hull of a digital object. Discret. Appl. Math. 216, 408–423 (2017)
Sarkar, A., Biswas, A., Dutt, M., Mondal, S.: Finding shortest triangular path and its family inside a digital object. Fundam. Inform. 159(3), 297–325 (2018)
Siqueira, M., Latecki, L.J., Tustison, N.J., Gallier, J.H., Gee, J.C.: Topological repairing of 3D digital images. J. Math. Imaging Vis. 30(3), 249–274 (2008)
Sossa-Azuela, J.H., Cuevas-Jiménez, E.V., Zaldivar-Navarro, D.: Computation of the Euler number of a binary image composed of hexagonal cells. J. Appl. Res. Technol. 8, 340–350 (2010)
Stelldinger, P., Latecki, L.J., Siqueira, M.: Topological equivalence between a 3D object and the reconstruction of its digital image. IEEE Trans. Pattern Anal. Mach. Intell. 29(1), 126–140 (2007)
Wiederhold, P., Morales, S.: Thinning on quadratic, triangular, and hexagonal cell complexes. In: Brimkov, V.E., Barneva, R.P., Hauptman, H.A. (eds.) IWCIA 2008. LNCS, vol. 4958, pp. 13–25. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78275-9_2
Acknowledgement
We are grateful to the anonymous reviewers for careful reading of the paper and constructive comments. This work has been partially supported by the Ministry of Education and Science of the Republic of Serbia within the Project No. 34014.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Čomić, L. (2019). Gaps and Well-Composed Objects in the Triangular Grid. In: Marfil, R., Calderón, M., Díaz del Río, F., Real, P., Bandera, A. (eds) Computational Topology in Image Context. CTIC 2019. Lecture Notes in Computer Science(), vol 11382. Springer, Cham. https://doi.org/10.1007/978-3-030-10828-1_5
Download citation
DOI: https://doi.org/10.1007/978-3-030-10828-1_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-10827-4
Online ISBN: 978-3-030-10828-1
eBook Packages: Computer ScienceComputer Science (R0)