Abstract
Evolutionary computation (EC) has a great potential of exploiting parallelization, a feature often underemphasized when describing evolutionary algorithms (EAs). In this paper, we show that the paradigm of stream processing (SP) can be used to express EAs in a way that allows the immediate exploitation of parallel and distributed computing, not at the expense of the agnosticity of the EAs with respect to the application domain. We introduce the first formal framework for EC based on SP and describe several building blocks tailored to EC. Then, we experimentally validate our framework and show that (a) it can be used to express common EAs, (b) it scales when deployed on real-world stream processing engines (SPEs), and (c) it facilitates the design of EA modifications which would require a larger effort with traditional implementation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alba, E., Luque, G., Nesmachnow, S.: Parallel metaheuristics: recent advances and new trends. Int. Trans. Oper. Res. 20(1), 1–48 (2013)
Bartoli, A., Manzoni, L., Medvet, E.: Commentary on “Jaws 30’’, by W.B. Langdon. Genet. Program Evolvable Mach. 24, 23 (2023). https://doi.org/10.1007/s10710-023-09471-1
Carbone, P., Fragkoulis, M., Kalavri, V., Katsifodimos, A.: Beyond analytics: the evolution of stream processing systems. In: Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data, pp. 2651–2658 (2020)
Cardellini, V., Lo Presti, F., Nardelli, M., Russo, G.R.: Runtime adaptation of data stream processing systems: the state of the art. ACM Comput. Surv. 54(11s), 1–36 (2022)
De Lorenzo, A., Bartoli, A., Castelli, M., Medvet, E., Xue, B.: Genetic programming in the twenty-first century: a bibliometric and content-based analysis from both sides of the fence. Genet. Program Evolvable Mach. 21, 181–204 (2020)
Duvignau, R., Gulisano, V., Papatriantafilou, M., Savic, V.: Streaming piecewise linear approximation for efficient data management in edge computing. In: Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing (2019)
Flink: Apache Flink (2023). https://flink.apache.org. Accessed 27 Jan 2023
FlinkML: Apache Flink ML Documentation (2023). https://nightlies.apache.org/flink/flink-ml-docs-stable/. Accessed 14 Nov 2023
Fortin, F.A., De Rainville, F.M., Gardner, M.A.G., Parizeau, M., Gagné, C.: DEAP: evolutionary algorithms made easy. J. Mach. Learn. Res. 13(1), 2171–2175 (2012)
Frasca, F., Gulisano, V., Mencagli, G., Palyvos-Giannas, D., Torquati, M.: Accelerating stream processing queries with congestion-aware scheduling and real-time Linux threads. In: Proceedings of the 20th ACM International Conference on Computing Frontiers, pp. 144–153 (2023)
Gulisano, V., Jimenez-Peris, R., Patino-Martinez, M., Soriente, C., Valduriez, P.: StreamCloud: an elastic and scalable data streaming system. IEEE Trans. Parallel Distrib. Syst. 23(12), 2351–2365 (2012)
Gulisano, V., Palyvos-Giannas, D., Havers, B., Papatriantafilou, M.: The role of event-time order in data streaming analysis. In: Proceedings of the 14th ACM International Conference on Distributed and Event-Based Systems, DEBS 2020, pp. 214–217. Association for Computing Machinery, New York (2020). ISBN 9781450380287. https://doi.org/10.1145/3401025.3404088
Gulisano, V., Papadopoulos, A.V., Nikolakopoulos, Y., Papatriantafilou, M., Tsigas, P.: Performance modeling of stream joins. In: Proceedings of the 11th ACM International Conference on Distributed and Event-based Systems, pp. 191–202 (2017)
Harada, T., Alba, E.: Parallel genetic algorithms: a useful survey. ACM Comput. Surv. 53(4), 1–39 (2020)
Havers, B., Duvignau, R., Najdataei, H., Gulisano, V., Koppisetty, A.C., Papatriantafilou, M.: DRIVEN: a framework for efficient data retrieval and clustering in vehicular networks. In: 2019 IEEE 35th International Conference on Data Engineering (ICDE), pp. 1850–1861. IEEE (2019)
Hummer, W., Satzger, B., Dustdar, S.: Elastic stream processing in the cloud. Wiley Interdisc. Rev. Data Min. Knowl. Disc. 3(5), 333–345 (2013)
Isah, H., Abughofa, T., Mahfuz, S., Ajerla, D., Zulkernine, F., Khan, S.: A survey of distributed data stream processing frameworks. IEEE Access 7, 154300–154316 (2019)
La Cava, W., et al.: Contemporary symbolic regression methods and their relative performance. arXiv preprint arXiv:2107.14351 (2021)
Maitre, O., Baumes, L.A., Lachiche, N., Corma, A., Collet, P.: Coarse grain parallelization of evolutionary algorithms on GPGPU cards with EASEA. In: Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation, pp. 1403–1410 (2009)
Medvet, E., Bartoli, A., Carminati, B., Ferrari, E.: Evolutionary inference of attribute-based access control policies. In: Gaspar-Cunha, A., Henggeler Antunes, C., Coello, C.C. (eds.) EMO 2015. LNCS, vol. 9018, pp. 351–365. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15934-8_24
Medvet, E., Nadizar, G., Manzoni, L.: JGEA: a modular java framework for experimenting with evolutionary computation. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 2009–2018 (2022)
Najdataei, H., Gulisano, V., Tsigas, P., Papatriantafilou, M.: pi-Lisco: parallel and incremental stream-based point-cloud clustering. In: Proceedings of the 37th ACM/SIGAPP Symposium on Applied Computing, pp. 460–469 (2022)
Najdataei, H., Nikolakopoulos, Y., Gulisano, V., Papatriantafilou, M.: Continuous and parallel LiDAR point-cloud clustering. In: 2018 IEEE 38th International Conference on Distributed Computing Systems (ICDCS), pp. 671–684. IEEE (2018)
Palyvos-Giannas, D., Havers, B., Papatriantafilou, M., Gulisano, V.: Ananke: a streaming framework for live forward provenance. Proc. VLDB Endow. 14(3), 391–403 (2020)
Palyvos-Giannas, D., Mencagli, G., Papatriantafilou, M., Gulisano, V.: Lachesis: a middleware for customizing OS scheduling of stream processing queries. In: Proceedings of the 22nd International Middleware Conference, pp. 365–378 (2021)
Palyvos-Giannas, D., Tzompanaki, K., Papatriantafilou, M., Gulisano, V.: Erebus: explaining the outputs of data streaming queries. In: Very Large Data Base, vol. 16, pp. 230–242 (2023)
Pigozzi, F., Medvet, E.: Evolving modularity in soft robots through an embodied and self-organizing neural controller. Artif. Life 28(3), 322–347 (2022)
Pospichal, P., Jaros, J., Schwarz, J.: Parallel genetic algorithm on the CUDA architecture. In: Di Chio, C., et al. (eds.) EvoApplications 2010. LNCS, vol. 6024, pp. 442–451. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12239-2_46
Rathore, M.M., Son, H., Ahmad, A., Paul, A., Jeon, G.: Real-time big data stream processing using GPU with spark over Hadoop ecosystem. Int. J. Parallel Program. 46(3), 630–646 (2017). https://doi.org/10.1007/s10766-017-0513-2
Röger, H., Mayer, R.: A comprehensive survey on parallelization and elasticity in stream processing. ACM Compu. Surv. (CSUR) 52(2), 1–37 (2019)
Rovito, L., De Lorenzo, A., Manzoni, L.: Evolution of Walsh Transforms with genetic programming. In: Proceedings of the Companion Conference on Genetic and Evolutionary Computation, pp. 2386–2389 (2023)
Rudin, C.: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 1(5), 206–215 (2019)
Russo, G.R., Cardellini, V., Presti, F.L.: Reinforcement learning based policies for elastic stream processing on heterogeneous resources. In: Proceedings of the 13th ACM International Conference on Distributed and Event-Based Systems, pp. 31–42 (2019)
Stephens, R.: A survey of stream processing. Acta Informatica 34, 491–541 (1997)
Virgolin, M., Alderliesten, T., Bosman, P.A.: Linear scaling with and within semantic backpropagation-based genetic programming for symbolic regression. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 1084–1092 (2019)
White, D.R., et al.: Better GP benchmarks: community survey results and proposals. Genet. Program Evolvable Mach. 14, 3–29 (2013)
Acknowledgements
This study was carried out within the PNRR research activities of the consortium iNEST (Interconnected North-Est Innovation Ecosystem) funded by the European Union Next-GenerationEU (Piano Nazionale di Ripresa e Resilienza (PNRR) - Missione 4 Componente 2, Investimento 1.5 - D.D. 1058 23/06/2022, ECS_00000043), and by the Marie Skłodowska-Curie Doctoral Network project RELAX-DN, funded by the European Union under Horizon Europe 2021–2027 Framework Programme Grant Agreement number 101072456.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Gulisano, V., Medvet, E. (2024). Evolutionary Computation Meets Stream Processing. In: Smith, S., Correia, J., Cintrano, C. (eds) Applications of Evolutionary Computation. EvoApplications 2024. Lecture Notes in Computer Science, vol 14634. Springer, Cham. https://doi.org/10.1007/978-3-031-56852-7_24
Download citation
DOI: https://doi.org/10.1007/978-3-031-56852-7_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-56851-0
Online ISBN: 978-3-031-56852-7
eBook Packages: Computer ScienceComputer Science (R0)