Nothing Special   »   [go: up one dir, main page]

Skip to main content

An Adaptive Feature Selection Method for Learning-to-Enumerate Problem

  • Conference paper
  • First Online:
Advances in Information Retrieval (ECIR 2024)

Abstract

In this paper, we propose a method for quickly finding a given number of instances of a target class from a fixed data set. We assume that we have a noisy query consisting of both useful and useless features (e.g., keywords). Our method finds target instances and trains a classifier simultaneously in a greedy strategy: it selects an instance most likely to be of the target class, manually label it, and add it to the training set to retrain the classifier, which is used for selecting the next item. In order to quickly inactivate useless query features, our method compares discriminative power of features, and if a feature is inferior to any other feature, the weight 0 is assigned to the inferior one. The weight is 1 otherwise. The greedy strategy explained above has a problem of bias: the classifier is biased toward target instances found earlier, and deteriorates after running out of similar target instances. To avoid it, when we run out of items that have the superior features, we re-activate the inactivated inferior features. By this mechanism, our method adaptively shifts to new regions in the data space. Our experiment shows that our binary and adaptive feature weighting method outperforms existing methods.

This work was supported by JSPS KAKENHI Grant Number 22H00508, 23H03405, and JST CREST Grant Number JPMJCR22M2, Japan.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Beluch, W.H., Genewein, T., Nürnberger, A., Köhler, J.M.: The power of ensembles for active learning in image classification. In: Proceedings of CVPR, pp. 9368–9377 (2018)

    Google Scholar 

  2. Cai, J., Luo, J., Wang, S., Yang, S.: Feature selection in machine learning: a new perspective. Neurocomputing 300, 70–79 (2018)

    Article  Google Scholar 

  3. Chandrashekar, G., Sahin, F.: A survey on feature selection methods. Comput. Electr. Eng. 40(1), 16–28 (2014)

    Article  Google Scholar 

  4. Cheng, J., Bernstein, M.S.: Flock: hybrid crowd-machine learning classifiers. In: Proceedings of CSCW, pp. 600–611 (2015)

    Google Scholar 

  5. Durand, A., Gagné, C.: Thompson sampling for combinatorial bandits and its application to online feature selection. In: Proceedings of AAAI Conference Workshop on Sequential Decision-Making with Big Data, pp. 6–9 (2014)

    Google Scholar 

  6. Gal, Y., Islam, R., Ghahramani, Z.: Deep Bayesian active learning with image data. In: Proceedings of ICML, pp. 1183–1192. PMLR (2017)

    Google Scholar 

  7. Ganguly, D., Leveling, J., Magdy, W., Jones, G.J.: Patent query reduction using pseudo relevance feedback. In: Proceedings of CIKM, pp. 1953–1956 (2011)

    Google Scholar 

  8. Gupta, M., Bendersky, M.: Information retrieval with verbose queries. In: Proceedings of SIGIR, pp. 1121–1124 (2015)

    Google Scholar 

  9. Hall, M.A., Smith, L.A.: Feature selection for machine learning: comparing a correlation-based filter approach to the wrapper. In: Proceedings of International Florida Artificial Intelligence Research Society Conference, pp. 235–239. AAAI Press (1999)

    Google Scholar 

  10. Huang, P., Bu, J., Chen, C., Qiu, G.: An effective feature-weighting model for question classification. In: Proceedings of International Conference on Computational Intelligence and Security, pp. 32–36 (2007)

    Google Scholar 

  11. Jörger, P., Baba, Y., Kashima, H.: Learning to enumerate. In: Villa, A.E.P., Masulli, P., Pons Rivero, A.J. (eds.) ICANN 2016. LNCS, vol. 9886, pp. 453–460. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44778-0_53

    Chapter  Google Scholar 

  12. Khalid, S., Khalil, T., Nasreen, S.: A survey of feature selection and feature extraction techniques in machine learning. In: Proceedings of Science and Information Conference, pp. 372–378 (2014)

    Google Scholar 

  13. Konyushkova, K., Sznitman, R., Fua, P.: Learning active learning from data. arXiv preprint arXiv:1703.03365 (2017)

  14. Koopman, B., Cripwell, L., Zuccon, G.: Generating clinical queries from patient narratives: a comparison between machines and humans. In: Proceedings of SIGIR, pp. 853–856 (2017)

    Google Scholar 

  15. Kou, G., Yang, P., Peng, Y., Xiao, F., Chen, Y., Alsaadi, F.E.: Evaluation of feature selection methods for text classification with small datasets using multiple criteria decision-making methods. Appl. Soft Comput. 86, 105836 (2020)

    Article  Google Scholar 

  16. Lai, T.L., Robbins, H.: Asymptotically efficient adaptive allocation rules. Adv. Appl. Math. 6(1), 4–22 (1985)

    Article  MathSciNet  Google Scholar 

  17. Lan, M., Tan, C.L., Low, H.: Proposing a new term weighting scheme for text categorization. In: Proceedings of National Conference on Artificial Intelligence, pp. 763–768 (2006)

    Google Scholar 

  18. Qi, Y., Zhang, J., Liu, Y., Xu, W., Guo, J.: CGTR: convolution graph topology representation for document ranking. In: Proceedings of CIKM, pp. 2173–2176 (2020)

    Google Scholar 

  19. Reddy, G.T., et al.: Analysis of dimensionality reduction techniques on big data. IEEE Access 8, 54776–54788 (2020)

    Article  Google Scholar 

  20. Remeseiro, B., Bolon-Canedo, V.: A review of feature selection methods in medical applications. Comput. Biol. Med. 112, 103375 (2019)

    Article  Google Scholar 

  21. Sánchez-Maroño, N., Alonso-Betanzos, A., Tombilla-Sanromán, M.: Filter methods for feature selection: a comparative study. In: Proceedings of IDEAL, pp. 178–187 (2007)

    Google Scholar 

  22. Settles, B.: Closing the loop: fast, interactive semi-supervised annotation with queries on features and instances. In: Proceedings of EMNLP, pp. 1467–1478. ACL (2011)

    Google Scholar 

  23. Settles, B.: Active learning. Synth. Lect. Artif. Intell. Mach. Learn. 6(1), 1–114 (2012)

    MathSciNet  Google Scholar 

  24. Sun, X., Tang, H., Zhang, F., Cui, Y., Jin, B., Wang, Z.: Table: a task-adaptive BERT-based listwise ranking model for document retrieval. In: Proceedings of CIKM, pp. 2233–2236 (2020)

    Google Scholar 

  25. Takahama, R., Baba, Y., Shimizu, N., Fujita, S., Kashima, H.: AdaFlock: adaptive feature discovery for human-in-the-loop predictive modeling. In: Proceedings of AAAI Conference, pp. 1619–1626 (2018)

    Google Scholar 

  26. Van Der Maaten, L., Postma, E., Van den Herik, J.: Dimensionality reduction: a comparative. J. Mach. Learn. Res. 10(66–71), 13 (2009)

    Google Scholar 

  27. Weinberger, K.Q., Sha, F., Saul, L.K.: Learning a kernel matrix for nonlinear dimensionality reduction. In: Proceedings of ICML, p. 106 (2004)

    Google Scholar 

  28. Yahoo! crowdsourcing. http://crowdsourcing.yahoo.co.jp/

  29. Yahoo! news. http://news.yahoo.co.jp/

  30. Yu, H., Yang, X., Zheng, S., Sun, C.: Active learning from imbalanced data: a solution of online weighted extreme learning machine. IEEE Trans. Neural Netw. Learn. Syst. 30(4), 1088–1103 (2018)

    Google Scholar 

  31. Zhang, J., Geng, Y.A.O., Li, Q., Shi, C.: More than one: a cluster-prototype matching framework for zero-shot learning. In: Proceedings of CIKM, pp. 1803–1812 (2020)

    Google Scholar 

  32. Zou, J.Y., Chaudhuri, K., Kalai, A.T.: Crowdsourcing feature discovery via adaptively chosen comparisons. In: Proceedings of AAAI HComp, pp. 198–205 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keishi Tajima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Horikawa, S., Nemoto, C., Tajima, K., Matsubara, M., Morishima, A. (2024). An Adaptive Feature Selection Method for Learning-to-Enumerate Problem. In: Goharian, N., et al. Advances in Information Retrieval. ECIR 2024. Lecture Notes in Computer Science, vol 14610. Springer, Cham. https://doi.org/10.1007/978-3-031-56063-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-56063-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-56062-0

  • Online ISBN: 978-3-031-56063-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics