Abstract
The Learning to Enumerate problem is a new variant of the typical active learning problem. Our objective is to find data that satisfies arbitrary but fixed conditions, without using any prelabeled training data. The key aspect here is to query as few as possible non-target data. While typical active learning techniques try to keep the number of queried labels low they give no regards to the class these instances belong to. Since the aim of this problem is different from the common active learning problem, we started with applying uncertainty sampling as a base technique and evaluated the performance of three different base learner on 19 public datasets from the UCI Machine Learning Repository.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)
Settles, B.: Active Learning. Synth. Lect. Artif. Intell. Mach. Learn. 6, 1–114 (2012). Morgan & Claypool Publishers
Baba, Y., Kashima, H., Nohara, Y., Kai, E., Ghosh, P., Islam, R., Ahmed, A., Kuruda, M., Inoue, S., Hiramatsu, T., Kimura, M., Shimizu, S., Kobayashi, K., Tsuda, K., Sugiyama, M., Blondel, M., Ueda, N., Kitsuregawa, M., Nakashima, N.: Predictive approaches for low-cost preventive medicine program in developing countries. In: Proceedings of the 21st ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1681–1690. ACM (2015)
Kajino, H., Kishimoto, A., Botea, A., Daly, E., Kotoulas, S.: Active learning for multi-relational data construction. In: Proceedings of the 24th International Conference on World Wide Web, pp. 560–569. ACM (2015)
Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed bandit problem. Mach. Learn. 47(2–3), 235–256 (2002). Springer
Scikit-Learn User Guide. http://scikit-learn.org/stable/user_guide.html
UC Irvine Machine Learning Repository. https://archive.ics.uci.edu/ml/index.html
Acknowledgments
This research was supported by the Landesstiftung Baden-Württemberg (Baden-Württemberg-STIPENDIUM) and by MEXT Grant-in-Aid for Scientific Research on Innovative Areas.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Jörger, P., Baba, Y., Kashima, H. (2016). Learning to Enumerate. In: Villa, A., Masulli, P., Pons Rivero, A. (eds) Artificial Neural Networks and Machine Learning – ICANN 2016. ICANN 2016. Lecture Notes in Computer Science(), vol 9886. Springer, Cham. https://doi.org/10.1007/978-3-319-44778-0_53
Download citation
DOI: https://doi.org/10.1007/978-3-319-44778-0_53
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-44777-3
Online ISBN: 978-3-319-44778-0
eBook Packages: Computer ScienceComputer Science (R0)